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Preface

In the past few decades persistent homology has emerged as one

of the focal points of modern topology. While its beginnings have

been motivated by practical demand in computational geometry, the

scope of persistence soon expanded. Results focused on topological

and algebraic fundamentals have been complemented by algorithmic

and later statistical development leading to successful applications in

sciences. Today, persistent homology is a wide ranging topic engaging

a diverse community of mathematicians, computer scientists, data

analysts and scientists in general.

This textbook does not aim to encompass the endless variety of top-

ics related to persistence. The main goal is to provide students with a

manageable, geometrically intuitive and self contained introduction to

persistent homology. The writing arose from the lecture notes on the

course that has been taught at the University of Ljubljana for more

than a decade. It is intended for a mixed audience of mathematics and

computer science students at the masters level. However, any moti-

vated student with scientific or technical inclination should (hopefully)

find it accessible.

As a prerequisite only basic linear algebra (including Gaussian elim-

ination) and basic Euclidean geometry are assumed. The textbook

is structured so that it gradually introduces fundamental structures.

Simplicial complexes and Euler characteristic are first defined in the

plane, before generalizing them to the abstract setting. Orientation

is first introduced on surfaces, before utilizing it for homology com-

putations. Required algebra is summarized in Chapter 6 to ensure a

familiar algebraic footing.

Side notes throughout the text are intended to clarify certain ideas,

provide some explanation, or to convey a geometric idea without in-

terrupting the flow of the main text. At the end of each chapter, a

reader may find a short comment on the background, along with a few

references, keywords, and appendices with further topics or additional

material.
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Rips-Čech correlation 69

5.5 Concluding remarks 69

Appendix: the MiniBall algorithm 70

Appendix: a sketch of a proof of the nerve theorem 5.3.2 71

Appendix: Dowker duality 73

6 Fields and vector spaces 75

6.1 Fields 75

The fields of remainders Zp 76



7

6.2 Vector spaces 78

6.3 Concluding remarks 81

Appendix: A very short introduction to Abelian groups 81

7 Homology: definition and computation 85

7.1 Definition 85

Chains 85

Boundary 86

Homology 88

Zero-dimensional homology 90

Homology of a graph 91

7.2 Computing homology 92

Echelon forms 92

Smith normal form and representatives 94

Incremental expansion and elementary collapse 96

7.3 Examples of homology 97

Disjoint unions 97

Euler characteristic 97

Spheres 98

Surfaces 98

Impact of coe�cients: the Klein bottle 100

Alexander duality 101

7.4 Concluding remarks 102

Appendix: Homology with coe�cients in Abelian groups 103

Appendix: cubical homology 106

8 Homology: impact and computation by parts 109

8.1 Impact 109

Functoriality of homology 110

Brouwer fixed point 111

Hairy ball 112

Invariance of domain 113



8

8.2 Homology by parts 114

Exact sequences 114

Mayer-Vietoris exact sequence 115

8.3 Concluding remarks 116

Appendix: zig-zag lemma 117

Appendix: Relative homology 119

9 Persistent homology: definition and computation 121

9.1 Definition 121

Formal definition 123

9.2 Visualization 125

Barcodes 125

Persistence diagrams 126

The fundamental lemma of persistent homology 127

9.3 Computation 127

Matrix reduction 128

Extracting persistence 128

Representatives 129

Example 130

Computational tricks 132

9.4 Concluding remarks 133

Appendix: zig-zag persistence and multi-parameter persistence 134

10 Persistent homology: stability theorem 137

10.1 Continuous filtrations 137

Interleaving distance for filtrations 140

10.2 Persistence modules 141

Persistence modules 141

Decomposition 142

Interleaving distance for persistence modules 143



9

10.3 Bottleneck distance and stability theorem 145

Bottleneck distance 145

Stability theorem 147

10.4 Interpretations and examples 148

1-dimensional persistence of geodesic spaces 148

Stability demonstrated 150

Spheres 151

De-noising a function 152

10.5 Concluding remarks 153

Appendix: From the interleaving distance to the bottleneck distance 154

11 Discrete Morse theory 157

11.1 Motivation 157

11.2 Discrete Morse functions and discrete vector fields 159

Gradient vector fields 160

11.3 Morse homology 162

Morse chain complex 162

Morse homology 163

Generating DMFs and gradient vector fields 165

11.4 Concluding remarks 166

A proof of Theorem 11.2.6 166

Index 169

Bibliography 173





1

Metric spaces

Topology and geometry study the shapes of spaces. In this

book we will look at the modelling, computation, and representation of

shapes and their properties. Our starting point will be metric spaces.

These are sets with a meaningful notion of a distance (metric). In this

chapter, we will focus on an intuitive understanding of three equiva-

lence types of metric spaces: the isometry type, the homeomorphism

type, and the homotopy type of spaces. These types will play a crucial

role in later sections.

1.1 Definition of metric spaces and basic examples

T Word “i↵” stands for “if and only
if”.

Definition 1.1.1. A metric space (X, d) is a pair consisting of a set

X and a function d : X⇥ X ! [0, •), such that for any x, y, z 2 X
the following hold:

• d(x, y) = 0 i↵ x = y,

• symmetry: d(x, y) = d(y, x), and

• triangle inequality: d(x, z)  d(x, y) + d(y, z).

Function d is referred to as a distance or a metric.

If X is introduced as a metric space, we implicitly assume d or dX is

the metric on X, unless stated otherwise.

Example 1.1.2. The following are some of metrics d⇤ on Rn. For

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) we define:

• d1(x, y) = Ân
i=1 |xi � yi|

• d2(x, y) =
q

Ân
i=1(xi � yi)2

• dp(x, y) = p
p

Ân
i=1(xi � yi)p for p > 1



12 introduction to persistent homology

• d•(x, y) = maxi2{1,2,...,n} |xi � yi|

x = (1, 2)

y = (3, 5)

2

3

Figure 1.1: A few distances:
d1(x, y) = 5, d2(x, y) =

p
13,

d•(x, y) = 3.

From now on, Rn is always considered to be equipped with the

Euclidean d2 metric, unless stated otherwise.

Example 1.1.3. The underlying space can be di↵erent that Rn. Here

are some examples:

• Suppose X is a finite graph with a length associated with each edge.

The geodesic distance dg between two vertices in X is the length of

the shortest path between these vertices in X.

• Suppose X is a surface. We can think of it as a sphere or the sur-

face of the earth. Similarly as above, the geodesic distance dg be-

tween two points on X is the length of the shortest path between

these points on X. For example, consider the distance between Lon-

don and Sydney (see Figure 1.2). The distance usually thought of in

this case is the geodesic distance on Earth, that is, the length of the

shortest path between the two cities. The actual Euclidean distance

in space between the two cities is shorter, but usually not of interest,

since the path that realizes it passes fairly close to the center of the

Earth.

LON

SY D

d2(LON,SY D)

dg(LON,SY D)

Figure 1.2: Geodesic vs d2 distance
between London and Sydney.

• Suppose A is a finite set which we call alphabet. Let X denote a set

of finite sequences (words) consisting of the elements of A (letters).

The Levenshtein distance between two words in X is defined as

the minimum number of edits required to transform one word into

another, where the allowed edits are:

– an insertion of a letter at any position;

– a deletion of a letter anywhere;

– a substitution of a letter in any place by another letter.

See Figure 1.3 for example.

DOG DOL DOLF WOLF

Figure 1.3: Levenshtein distance
between DOG and WOLF is 3 by the
following argument. The sequence
above demonstrates that the distance
is at most 3. As WOLF has three
letters that do not appear in DOG,
the distance is at least 3.

• Let X be a finite set and let 2X be the collection of all subsets of X.

The Jaccard distance on 2X is defined as

dJ(A, B) =
|A [ B|� |A \ B|

|A [ B| .

For a metric space (X, d), x 2 X and r > 0 we define the closed1 1 As we will only consider closed
balls, the phrase will be simplified to
just “balls”.

r-ball around x as

Bd(x, r) = {y 2 X | d(x, y)  r}.

When the metric is apparent from the context we omit it and use

B(x, r).
Figure 1.4: Balls in d1, d2 and d•
metric in the plane.
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1.2 Maps and equivalence types

When transforming or mapping spaces, we will always be using

continuous maps.

x

Figure 1.5: A graph (above) and a
ball around x in the geodesic metric
on the graph (below).

Definition 1.2.1. A map f : X ! Y between metric spaces is con-

tinuous if for each x 2 X and for each # > 0 there exists d > 0
so that the following holds for all y 2 X:

dX(x, y) < d =) dY( f (x), f (y)) < #.

The notion of continuity between metric spaces includes the classi-

cal continuity from calculus, i.e., all continuous elementary functions

R ! R are continuous in the sense of Definition 1.2.1 on (R, d1).

An equivalent definition of continuity could be stated in terms of

convergent sequences. A sequence of points {zi}i2N in Z converges

to w 2 Z (notation lim
i!•

zi = w) i↵ dZ(zi, w) converges to zero. It

turns out that a map f : X ! Y between metric spaces is continuous if

the following implication holds: If {xi}i2N is any sequence in X with

lim
i!•

xi = u 2 X, then lim
i!•

f (xi) f (u) 2 Y. A practical interpretation of

continuity would be the following: if we improve our measurements xi
in the sense that we get a better approximation for the desired state

w, then the values over a continuous map f (xi) also converge to the

value f (w). For example, suppose we want to estimate the area of

Madagascar from a .bmp image representing a map of the island. We

expect that as the resolution increases, we should get a better estimate

for the total area.

A continuous map g : [0, 1]! X is called a path from g(0) to g(1).

Next, we give three di↵erent equivalence relations on the class of

metric spaces, each of which preserves a di↵erent level of geometric

information. We start with the strictest equivalence, which preserves

the most structure.

Definition 1.2.2. A map f : X ! Y between metric spaces is an isom-

etry, if it is bijective and preserves distances, i.e., for every x1, x2 2
X, dX(x1, x2) = dY( f (x1), f (x2)). Two metric spaces are isomet-

ric, if there exists an isometry between them.

Figure 1.6: Four isometric planar
sets.

Isometries of the plane are combinations of translations, rotations

and reflections. In Rn, isometries are combinations of a translation

and a linear map. Linear isometries in Rn are represented by orthogo-

nal matrices.

It turns out that no patch of a sphere (equipped with the geodesic

metric) is2 isometric to a subset of a plane. A practical consequence of 2 This is a consequence of Gauss’
Theorem Egregium.
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this fact is that all topographic maps are distorted.

Although isometries are convenient in many situations, they are es-

sentially a geometric notion that is too rigid for topological treatment.

We next introduce a topological counterpart.

Definition 1.2.3. A map f : X ! Y between metric spaces is a home-

omorphism, if it is bijective, continuous, and f�1 is continuous. Two

metric spaces are homeomorphic (or of the same topological type;

notation: X ⇠= Y), if there exists a homeomorphism between them.

It is not hard to see that every isometry is a homeomorphism.

While homeomorphisms are much more flexible and preserve a number

of invariants of a space (later we will mention dimension, number of

components and holes, etc.), they do not preserve some of the geomet-

ric properties, e.g. diameter (the supremum of pairwise distances in a

space), radii of the smallest enclosing balls, etc.
Figure 1.7: Four homeomorphic sets
in the plane.

Figure 1.8: Four homeomorphic sets
in the plane.

We will often be referring to the following two spaces:

• For n 2 N an n-sphere Sn is any space homeomorphic to the n-

dimensional sphere

{x 2 Rn+1 | d2(x, 0) = 1} =
n
(x1, . . . , xn+1) 2 Rn+1 |

n+1

Â
i=1

x2
i = 1

o
,

where 0 = (0, 0, . . . , n) 2 Rn. Observe that S0 consists of two

points, S1 is homeomorphic to a circle3, S2 to the usual sphere, etc.

3 A circle is a 1-dimensional subset of
R2 defined by (x� a)2 + (y� b)2 = r2,
i.e., it is “empty inside”.

• For n 2 N an n-disc Dn is any space homeomorphic to the ball

B(0, 1) = {x 2 Rn | d2(x, 0)  1},

where 0 is the n-tuple of zeros4. Observe that D1 is a closed inter-

4 A clarification on terminology: A
ball (a metric concept) in a metric
space is a particular specific subspace
of that metric space. An n-disc (a
topological concept) is any space
homeomorphic to the standard unit
ball in Rn, and thus defined up to
homeomorphism. A square in the
plane is a 2-disc, but is not a ball
in the Euclidean metric. Any unit
ball of radius at least 1 on a circle of
circumference 1 is the entire circle
and so is not a 1-disc.

val, whose endpoints are S0. Similarly, D2 can be thought of as the

unit disc in the plane. Note that its boundary in the plane is S1.

Example 1.2.4. Here we provide some examples of homeomorphisms.

• Two finite metric spaces are homeomorphic i↵ they consist of the

same number of points. Each map between finite metric spaces is

continuous.

• Any two closed intervals are homeomorphic. In particular, a homeo-

morphism f : [0, 1]! [a, b] for a < b is given by f (t) = a + t(b� a).

• A square [�1, 1]2 in the plane is homeomorphic to the ball B((0, 0), 1)

in the plane. One of the homeomorphisms is given by the radial

map B((0, 0), 1)! [�1, 1]2 mapping:

� (0, 0) 7! (0, 0) and
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� (x, y) 7! r(x, y) · (x, y) for

r(x, y) =

p
x2 + y2

max{|x|, |y|} =
d2

⇣
(0, 0), (x, y)

⌘

d•

⇣
(0, 0), (x, y)

⌘ .

• All three balls in Figure 1.4 are homeomorphic via radial maps.

• For each n 2 N, Sn ⇠= Sm i↵ n = m. We will prove this result using

homology in a later chapter.

• For each n 2 N, Dn ⇠= Dm i↵ n = m. We will prove this result in

Theorem 8.1.7.

• No n-disc is homeomorphic to any k-sphere. Each n-sphere can be

obtained as a union of two n-discs acting as hemispheres.

Figure 1.9: Two homeomorphic
surfaces.

Figure 1.10: Two non-homeomorphic
surfaces.

Figure 1.11: The surface of a cube
with a puncture in each of the six
sides is homeomorphic to a planar set
with five holes.

While homeomorphism is the focal equivalence in the field of topol-

ogy, it turns out that many computable invariants are in fact invariant

with respect to a continuous deformation of spaces. These deforma-

tions are formalized by the concept of homotopy.

Definition 1.2.5. Continuous maps f , g : X ! Y between metric spaces

X and Y are homotopic [ f ' g] if there exists a continuous defor-

mation of f into g, i.e., if there exists a map H : X ⇥ [0, 1] ! Y,

such that H|X⇥{0} = f and H|X⇥{1} = g. Map H is called a

homotopy.

Another way to think about homotopy between f and g would be

as a continuous collection of paths from f (x) to g(x) in X. Homo-

topies induce an equivalence relation on continuous maps between

X and Y. Two maps belong to the same homotopy class i↵ they are

homotopic.

Example 1.2.6. Some examples concerning homotopies:

1. For each metric space X, any two maps f , g : X ! Rn are homo-

topic. A homotopy consists of line segments between f (x) and g(x).

In particular,

H(x, t) = (1� t) f (x) + tg(x).
S
1

f, g

H

f(S1)

g(S1)

Figure 1.12: Two maps in the plane
are homotopic.

2. Let w 2 S1. Then the identity map id : S1 ! S1 is not homotopic to

the constant map cw : S1 ! S1, which maps each point to w. Later

we will be able to prove this fact using homology. Note that by the

previous example both maps are homotopic in R2, hence the relation

of being homotopic depends on the target space of the maps.
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3. Consider the two spaces in Figure 1.13. Space X is a single point,

space Y consists of a point, an empty triangle (S1), a square (D2)

and a disc with a tail. Observe that there are four homotopy classes

of maps from X to Y, one for each component of Y.

X Y

Figure 1.13: There are four homo-
topy classes of maps from a single
point space X to Y.

We are now ready to introduce homotopy equivalence.

Definition 1.2.7. Metric spaces X and Y are homotopy equivalent

[X ' Y] if there exist maps f : X ! Y and g : Y ! X, such that

f � g ' idY and g � f ' idX. Maps f and g are called homotopy

equivalences.

Homeomorphic spaces are homotopy equivalent. A metric space X
is contractible, if it is homotopy equivalent to the one-point space.

Figure 1.14: Four contractible spaces.
Example 1.2.8. Some examples concerning homotopy equivalences:

• Let X = [0, 1] and Y = {0}. Then X ' Y, i.e., [0, 1] is contractible.

Map f : X ! Y is the constant map and map g : Y ! X can be

chosen to be any map, say g(0) = 0. Composition f � g is identity.

It remains to show that h = g � f : [0, 1] ! [0, 1], which is the

constant map at 0, is homotopic to the identity. Such a homotopy

is, for example, the linear homotopy from 1. of Example 1.2.6. In

the same way we can prove that Dn is contractible for each n 2 N.
Figure 1.15: Four spaces homotopy
equivalent to S1: Moebius band (top
left), usual band S1 ⇥ [0, 1] (top right)
and two planar sets below. Only two
of them are homeomorphic.

• Convex sets and trees are contractible.

• It turns out that no Sn is contractible. The case n = 1 follows from

2. of Example 1.2.6.

• Rn \ {(0, 0, . . . , 0)} ' Sn�1. Thinking of Sn�1 as the standard

unit sphere, this equivalence can be proved using the inclusion map

Sn�1 ,! Rn \ {(0, 0, . . . , 0)}, the radial map (see Figure 1.18)

Rn \ {(0, 0, . . . , 0)} ! Sn�1 defined by x 7! x/||x||, and linear

homotopy.

Figure 1.16: Two more homotopy
equivalent spaces.

Figure 1.17: A sequence of steps
deforming O to P. While the figure
demonstrated a continuous defor-
mation (homotopy equivalence), the
spaces presented in this case are
actually homeomorphic.

Homotopy equivalence does not preserve all topological properties

(for example, dimension), but it does preserve many of those that we

can compute: the number of components, holes, etc.

Connectedness

The first homotopy invariant we will mention is connectedness.

There are a few versions of it in topology. We will focus on the one

generated by paths.
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Definition 1.2.9. Space X is path connected, if for each x, y 2 X
there exists a path from x to y in X.

Subset A ✓ Y of a metric space Y is a path component, if it

is a maximal path connected subset.

Figure 1.18: Radial map of a punc-
tured ball B2((0, 0), 1) \ {(0, 0)} ⇢ R2

to the standard unit sphere (cir-
cle) S in the plane. Using the
argument used in last part of Ex-
ample 1.2.8, the induced homo-
topy equivalence demonstrates
B2((0, 0), 1) \ {(0, 0)} ' S.

A space is path connected i↵ it is itself a path component. As was

mentioned above, path connectedness is a homotopy invariant: if X
is path connected and Y ' X, then Y is also path connected. Simi-

larly, the number of path components of a metric space is a homotopy

invariant. Space Y on Figure 1.13 has four components.

" From now on we will be dropping
adjective “path” and only refer to
“connectedness”, and “components”.

1.2 Concluding remarks

Recap (highlights) of this chapter

• Metric spaces;

• Isometry;

• Homeomorphism;

• Homotopy equivalence;

• Connectedness.

Background and applications

Mathematics is the language of science and scientific concepts are

modelled by mathematical objects. These objects can range from

simple to sophisticated: a simple Boolean value (0 or 1, i.e., TRUE

or FALSE), a numeric value (integer, real, complex, etc.), a collection

of numeric values (e.g., a point in Rn), a collection of points in Rn, a

function, a vector space, a probability distribution, a graph, a matrix,

a metric space, etc. For most of these notions, there is a useful notion

of a metric that transfers the possible outputs into a metric space and

thus into the realm of geometry and topology, some of which we have

explored here.

The notions introduced in this chapter are covered in standard

books on topology5. 5 James R. Munkres. Topology.
Prentice Hall, Inc, 2nd ed edition,
2000
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Planar triangulations

In the previous chapter we learned about metric spaces along

with the homeomorphism and homotopy type. However, the descrip-

tions we used are not of combinatorial nature, and one would have

di�culties using them for computations. In this chapter we will intro-

duce one of the simplest combinatorial descriptions of planar spaces:

triangulations in the plane. Essentially, we would like to describe a

planar region as a “nice” union of triangles. Triangles are used primar-

ily because they are easy to describe: we only have to provide three

points. In later sections we will use these triangulations to compute

various invariants of the space: components, homology, etc.

It turns out that not every planar subset can be triangulated. How-

ever, finite triangulations (i.e., triangulations with finitely many trian-

gles) can be obtained for most planar subsets of interest to us .

edge xy

vertex z

x

y

z
Figure 2.1: Triangle xyz.

Figure 2.2: A planar triangulation.

2.1 Definition of planar triangulations

A triangle in the plane has three edges and three vertices.

Definition 2.1.1. A triangulation of a closed region D ⇢ R2 is a

decomposition of D into triangles, so that:

1. no triangle is degenerate (i.e., a point or just a line segment),

2. interiors of triangles are disjoint, and

3. intersection of any pair of triangles is either a common edge, a com-

mon vertex, or empty.

Geometric description of Definition 2.1.1 is provided by Figure 2.3.

T A planar region admitting a
triangulation is called a polygonal
region.

The idea of a triangulation may be generalized in various ways. One

could use di↵erent shapes of pieces to decompose a planar region or

the entire plane. Such decompositions are called tessellations. General-
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X 7

X 7

X 7
Figure 2.3: Conditions of Definition
2.1.1.

izing by dimension, one could use “higher dimensional triangles”, such

as tetrahedra, to decompose a higher dimensional space. This idea will

be formalized as simplicial complex in the next chapter.

Modifications of triangulations

Occasionally we will want to modify a triangulation. Here are some

of the most used modifications:

• add a triangle;

• remove a triangle;

• flip a common edge;

• refine using a subdivision. An example of a subdivision is the

barycentric subdivision: for each edge and each triangle consider

its geometric center (centroid) as a new vertex in our triangula-

tion, and then decompose each triangle as demonstrated by Figure

2.4. This subdivision is convenient when we want to refine a trian-

gulation, i.e., systematically decompose the triangles into smaller

triangles.

Figure 2.4: Modifications of tirangu-
lations.

We will often focus on triangulations of convex polyhedra, i.e.,

convex hulls of finitely many points in the plane, as defined below.

Given a finite S ⇢ R2 we say a triangulation on S is any triangulation

of the convex hull of S, whose vertex set is S.

2.2 Recap on convexity

Given points x, y 2 Rn, the line segment between them is parame-

terized as

g(t) = tx + (1� t)y, t 2 [0, 1].

Note that g(0) = y, g(1) = x, and g(1/2) corresponds to the

midpoint of the line segment.

x = �(1) y = �(0)

�(1/2)

Figure 2.5: Line segment.
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Definition 2.2.1. A subset A ⇢ Rn is convex, if for each a, b 2 A
the entire line segment between a and b lies in A, i.e., if 8t 2 [0, 1]

we have ta + (1� t)b 2 A. See Figure 2.6.

Given a subset B ⇢ Rn, its convex hull Conv(B) is the small-

est convex set containing B.

Figure 2.6: A convex (left) and a
non-convex (right) subset of the
plane.

The closed region on Figure 2.2 is not convex, while the ones on

Figure 2.4 are convex.

A triangle is the convex hull of the set of its vertices, which pro-

vides a convenient description of a triangle: the triangle with a�nely

independent vertices x, y, z 2 R2 can be parameterized by all possible

convex combinations of these vertices:

{a1x + a2y + a3z, | 8i 2 {1, 2, 3} : ai 2 [0, 1],
3

Â
i=1

ai = 1}.

The term “convex combination” (as opposed to “linear combination”)

refers to the fact that the coe�cients ai are from [0, 1] and add up to

1. These coe�cients are called barycentric coordinates in a triangle.

The point with a1 = a2 = a3 = 1/3 is the centroid of the triangle,

while points with two barycentric coordinates1 1/2 are the midpoints 1 ...and the third coordinate equal to
0.of the corresponding edges; all these points are vertices in the barycen-

tric subdivision shown in Figure 2.4.

Figure 2.7: A collection of points and
its convex hull.

Convex hull can be constructed by iteratively adding all feasible line

segments. It is important to note that for B ⇢ Rn the set obtained by

adding all line segments

{a1x + a2y | x, y 2 B, 8i : ai 2 [0, 1],
2

Â
i=1

ai = 1}

is typically not the convex hull. For example, starting with three ver-

tices and adding the line segments between all three pairs we would

obtain the set consisting of the edges but not the interior of the tri-

angle (which constitutes the convex hull of three points). Instead, we

have to add all possible line segments, or alternatively, add all convex

combinations in one step:

Conv B =
[

m2N

{
m

Â
i=1

aixi | 8i : xi 2 B, ai 2 [0, 1],
m

Â
i=1

ai = 1}.

By the Carathéodory theorem (see original reference2 or any modern 2 Constantin Caratheodory. Ub̈er den
Variabilitätsbereich der Koe�zienten
von Potenzreihen, die gegebene
Werte nicht annehmen. Math.
Ann. 64, no. 1, 95–115, 1907. doi:
10.1007/BF01449883

book treating convexity) we can bound the number of summands3 by

3 ...and also the number of iterative
steps in the procedure above...

the dimension of the ambient space plus one:

Conv B = {
n+1

Â
i=1

aixi | 8i : xi 2 B, ai 2 [0, 1],
n+1

Â
i=1

ai = 1}.

In particular: for a finite subset F ⇢ R2, each point of Conv(F) is

contained in the convex hull of some triple of points from F.

http://dx.doi.org/10.1007/BF01449883
http://dx.doi.org/10.1007/BF01449883
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2.3 Euler characteristic

Along with the number of components of a space, the Euler charac-

teristic is one of the first real topological invariants we come across. In

particular, while there are many triangulations of Conv(S) on a finite

subset S ⇢ R2, the Euler characteristic is the same for all of them.

For a given triangulation let:

• V be the number of its vertices,

• E be the number of its edges,

• F be the number of its triangles.

Definition 2.3.1. The Euler characteristic c of a triangulation is

defined as

c = F� E + V.

� = 0

� = �3

� = 1

Figure 2.8: A few planar trian-
gulations along with their Euler
characteristics.

Theorem 2.3.2 (A simple version of the Euler-Poincaré formula). As-

sume S ⇢ R2 is finite. For each triangulation of Conv(S) we have

c = 1.

Proof. Let us assume our triangulation has no vertical edge: if neces-

sary this can be achieved by a small rotation. Assign to each triangle

value +1 and to each edge value �1. Position each of these values to-

wards the unique rightmost vertex of the corresponding triangle/edge

as suggested by Figure 2.9. Assign to each vertex value +1. The total

sum of all assigned values is c.

For each single vertex add: the value at the vertex and all the val-

ues of the triangles and edges, that gathered at that vertex. We can

see that for each vertex the total sum is zero (arising from a sequence

edge-triangle-edge-...-edge-triangle-edge on the left from the vertex

plus the vertex itself) except for the leftmost vertex, where the value

equals one.

Remark 2.3.3. It turns out that c = 1 for each triangulation of a

contractible set4 in R2. In fact, for a triangulation of D ⇢ R2, c 4 Even more: c is a homotopy invari-
ant.equals the number of components minus the number of holes of D.

More technical details on this fact will be provided in later sections.

Let us just mention that the number of holes of a bounded set D ⇢ R2

equals the number of components of R2 \ D minus one (see Figure

2.10).
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Figure 2.9: The assignment of values
on triangles (red +), edges (blue �)
and vertices (green +) from the proof
of Theorem 2.3.2. Vertices also hold
additional +1 value. The triangles
are present but not shaded.

Figure 2.10: The top set has 2 holes.
Equivalently, its complement on the
bottom has 2 + 1 components.

2.4 Constructing planar triangulations with line sweep

Let S ⇢ R2 be finite. Perhaps the simplest way to construct a

triangulation on S is using a line sweep, which we now describe. As-

sume no two points of S have the same horizontal coordinate (this can

be achieved by a small rotation if necessary). Now imagine a vertical

line sweeping Conv(S) from left to right. Each time the line reaches

a point of S (a vertex in our triangulation), add all possible edges to-

wards left without creating intersections. Furthermore, for each new

bounded region add the corresponding triangle. As the line sweeps S
we thus obtain a triangulation on S.

Figure 2.11: A line sweep using the
vertical dashed line. Each time the
vertical line reaches a point, we add
all possible edges from that point
to a point with smaller horizontal
coordinate.

The condition that no two points have the same horizontal coor-

dinate was added for reasons of simplicity only. If more points, say

a1, a2, . . . , ak have the same horizontal coordinate then, instead of

adding all edges for all points ai at once, proceed point by point: add

all possible edges for a1, then for a2, etc. Depending on the order of

points ai we typically get di↵erent triangulations.

It should also be obvious that the line sweep does not need to pro-

ceed from left to right, but can proceed along any direction by sweep-
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ing a line perpendicular to that direction.

Figure 2.12: A line sweep triangula-
tion resulting in thin triangles.

While the line sweep is conceptually simple, it does tend to con-

struct triangulations with very thin triangles, which may be undesir-

able in applications. The triangulation that avoids thin triangles as

much as possible is the Delaunay triangulation.

2.5 Voronoi diagram and Delaunay triangulation

Figure 2.13: Circle on left, and a ball
on right. The boundary of the ball is
the circle.

Throughout this section let S ⇢ R2 be a finite subset satisfying a

general position property: no four points of S lie on the same circle.

We will first present the Voronoi diagram of S, which is a decomposi-

tion of the plane into specific regions.

For each s 2 S define the Voronoi region of s:

Vs = {x 2 R2 | 8u 2 S \ {s} : d(x, s)  d(x, u)}.

u

Vu

Figure 2.14: An example of a
Voronoi decomposition.

If a pair of Voronoi regions Vs1 , Vs2 has a non-empty intersection,

then (due to the general position condition above) this intersection is a

bounded or unbounded line segment called a Voronoi edge and lies on

the bisector between s1 and s2.

If a triple of Voronoi regions Vs1 , Vs2 , Vs3 has a non-empty intersec-

tion, then this intersection is a point called a Voronoi vertex. As this

point lies on all three pairwise bisectors, it is the center of the circle

containing s1, s2 and s3.
Figure 2.15: A Voronoi vertex ⇤ is
the center of the circle containing
the corresponding points • of S.
Voronoi edges lie on the bisector lines
between the corresponding points of
S.
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Definition 2.5.1. The Voronoi diagram (or decomposition) of S is

the collection of Voronoi regions, edges and vertices.

T Voronoi regions and Voronoi
diagrams can be defined for subsets
of Rn in the same way. In this case
the general position property is: no
collection of n + 2 points from S lies
on the same sphere.

A Voronoi region Vs consists of points, whose closest point of S is

s. If for some point w there are two such closest points in S, then w
is on the corresponding edge. If for some point w there are three such

closest points in S, then w is a Voronoi vertex. The general position

criterion above states that for each point in the plane, there can be no

four closest points in S.

Voronoi diagram can be thought of as a result of a uniform expan-

sion from the points of S. Suppose that in the initial stage we start

with a finite set of locations S. Then, as time goes by, each point of

S is being expanded into a region by growing at the same speed in all

directions. At the beginning all these regions are balls centered at the

points of S. As the growing regions collide, the growth towards the re-

gions (edges) of contact stops, but continues along all other directions.

The Voronoi decomposition is the final result of such growth, with

each Voronoi region Vs containing the points that were reached from s
first.

Figure 2.16: Voronoi diagram arising
from expansion around points.

Definition 2.5.2. The Delaunay triangulation on S, denoted by D(S),

is the triangulation on S, such that:

• its vertices are all points of S,

• xy is an edge i↵ Vx \Vy 6= ∆, and

• xyz is a triangle i↵ Vx \Vy \Vz 6= ∆.

It turns out that Definition 2.5.2 indeed defines a planar triangu-

lation on S. As a curiosity we mention that an edge xy of a Delaunay

triangulation may partially lie outside of the union Vx [Vy.

Note that the edge xy of a Delaunay triangulation is a boundary

edge (meaning it is contained in precisely one triangle) i↵ Vx \ Vy is

unbounded. Similarly, x is a boundary vertex of a Delaunay trian-

gulation (meaning it is an endpoint of some boundary edge) i↵ Vx is

unbounded.

Local Delaunay condition

For a triple of non-colinear points x, y, z 2 R2 in the plane define

C(x, y, z) to be the circle containing x, y, z, and let B(x, y, z) be the

ball whose boundary is C(x, y, z).
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Figure 2.17: An example of a Delau-
nay triangulation with its underlying
Voronoi decomposition.

x

y z

x

y z

Figure 2.18: C(x, y, z) on the left and
B(x, y, z) on the right.

Definition 2.5.3. Suppose an edge xy is shared by two di↵erent tri-

angles xyz and xyw of a triangulation. The edge xy is locally De-

launay [abbreviation: LD], if w /2 B(x, y, z).

Proposition 2.5.4. Suppose edge xy is shared by two di↵erent trian-

gles xyz and xyw from a triangulation.

1. Definition 2.5.3 is symmetric, i.e., w /2 B(x, y, z) i↵ z /2 B(x, y, w).

2. Each edge in a Delaunay triangulation is LD.
x x

y y
z z

ww

Figure 2.19: Proof of Proposition
2.5.4 (1).

Proof. Part (1) is apparent from Figure 2.19.

(2): Since abc is a triangle in D(S), there exists the corresponding

Voronoi vertex q = Vx \ Vy \ Vz, which is the center of C(x, y, z).
As q /2 Vw (recall that no four Voronoi regions have a nonempty

interesection by the general position property), d(q, x) = d(q, y) =

d(q, z) < d(q, w) by the definition of Voronoi regions, hence w /2
B(x, y, z).

The property of being LD is a local property, shared by all edges of

a Delaunay triangulation. It turns out that the converse of Proposition

2.5.4(2) is also true.
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Theorem 2.5.5. Suppose K is a triangulation on S. Then K is the De-

launay triangulation i↵ each edge is locally Delaunay.

A proof can be found in a textbook5. 5 Mark de Berg, Marc van Krev-
eld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geom-
etry: Algorithms and Applications.
Springer-Verlag, second edition,
2000. doi: 10.1007/978-3-540-77974-2

Construction of D(S)

Theorem 2.5.5 motivates the edge-flipping construction of Delaunay

triangulations: starting with any triangulation on S (say, one obtained

by a line sweep), keep flipping the non-LD edges. In order to algorith-

mically implement this construction we have to clarify two issues:

Figure 2.20: Edge flip.

1. How do we verify the LD condition?

2. Does the procedure stop?

We address 1. first. It turns out it is not hard to verify the condi-

tion of LD using the incircle test.

Proposition 2.5.6. [Incircle test] Suppose x = (x1, x2), y = (y1, y2), z =

(z1, z2) and w = (w1, w2) are four points in R2. Assume x, y, z are

not collinear and form a positively oriented triple, i.e.:
�������

1 x1 x2

1 y1 y2

1 z1 y2

�������
> 0

Then w /2 B(x, y, z) i↵

���������

1 x1 x2 x2
1 + x2

2
1 y1 y2 y2

1 + y2
2

1 z1 z2 z2
1 + z2

2
1 w1 w2 w2

1 + w2
2

���������

> 0.

x

y

z

Figure 2.21: Positively oriented triple
(x, y, z).

A proof and technical details of Proposition 2.5.6 are provided in

the Appendix. While Proposition 2.5.6 provides a convenient way

to verify LD property (and answer 1.), it does not suggest whether

the edge flip algorithm actually stops (2.). In order to address this

question we provide a couple more equivalent conditions to LD.

Suppose edge xy is shared by two di↵erent triangles xyz and xyw
from a triangulation K on S. We say that edge xy is a MaxMin edge,

if the minimal angle appearing in triangles xyz and xyw is larger than

the minimal angle appearing in triangles xzw and yzw.

http://dx.doi.org/10.1007/978-3-540-77974-2
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Proposition 2.5.7. Suppose edge xy is shared by two di↵erent trian-

gles xyz and xyw from a triangulation K on S. Then the following

conditions are equivalent:

(i) xy is LD.

(ii) xy is a MaxMin edge.

(iii) ]xzy +]xwy < p.

a

b

c

u

v

↵

↵

⇡ � ↵

p

Figure 2.22: Inscribed angle theorem.
Suppose u, v 2 C(a, b, c), as the figure
demonstrates. Then ]acb = ]aub =
p � ]avb. This obviously implies
]acb > ]apb.

Proof. Let us prove the equivalence (i) , (iii) first using the inscribed

angle theorem (see Figure 2.22).

xy is LD
definition() w /2 B(x, y, z) inscribed angle() p �]xzy > ]xwy ,

]xzy +]xwy < p.

We now turn our attention to (i) , (ii). Let a be the minimal an-

gle appearing in triangles xyz, xyw, xzw and yzw. It is easy to see that

a has to lie either along xy or zw as all the other angles get dissected

(and hence decreased) by either xy or zw in one of the configurations.

x

y

z

w

Figure 2.23: Proof of Proposition
2.5.7, (i) , (ii).

Assume xy is LD. According to the inscribed angle theorem, ]xyz >

]xwz, hence ]xyz does not equal a. In the same way we can prove

that no angle along xy equals a, hence xy is the MaxMin edge.

Assume now that xy is not LD. Using the identical argument as

in the previous paragraph we can prove that each angle along zw is

larger than the corresponding angle along xy. Hence a has to lie along

xy and therefore xy is not a MaxMin edge.

Proposition 2.5.7 implies that each edge flip, which makes an edge

in a triangulation LD, increases the minimal angles in the triangula-

tion. Let us explain this statement in more detail. For each triangle

Ti in a triangulation K on S let ti denote the size of its minimal angle.

Construct a lexicographically ordered list of these minimal angles, i.e.,

ti0  ti1  . . .  tim . Proposition 2.5.7 implies that every time we

execute an edge flip making an edge in a triangulation LD, the new

lexicographically ordered list of the minimal angles t0i0  t0i1  . . .  t0im
is lexicographical larger than the previous list, i.e., tij  t0ij

, 8j with

strict inequality holding for at least one index j . Hence by making

the required edge flips that keep turning edges into LD edges we can’t

return to the initial or any already visited triangulation. Since there

are only finitely many triangulations on S, and therefore finitely many

possible ordered lists of minimal angles, the edge flipping algorithm

terminates, answering 2. above a�rmatively.

Conclusion: the edge flipping algorithm terminates with D(S).
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A triangulation, for which the lexicographically ordered list of the

minimal angles is maximal in the lexicographical order, is called a

MaxMin triangulation.

Theorem 2.5.8. A MaxMin triangulation on S coincides with D(S).

In particular, there exists only one MaxMin triangulation on S.

2.6 Concluding remarks

Recap (highlights) of this chapter

• Planar triangulations;

• Convexity;

• Euler characteristic;

• Line sweep;

• Voronoi diagram and Delaunay triangulation;

• Constructing the Delaunay triangulation using the locally Delaunay

condition and the incircle test.

Background and applications

The Euler characteristic was introduced by Leonhard Euler in the

18th century. The line sweep algorithm, Voronoi diagram and Delau-

nay triangulation are basic notions studied especially in computational

geometry6. Applications of the Euler characteristic include image 6 Mark de Berg, Marc van Krev-
eld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geom-
etry: Algorithms and Applications.
Springer-Verlag, second edition,
2000. doi: 10.1007/978-3-540-77974-2

analysis7, target enumeration8, etc. The edge flip algorithm we men-

7 A. Roy, R. A. I. Haque, A. J. Mi-
tra, M. Dutta Choudhury, S. Taraf-
dar, and T. Dutta. Understanding
flow features in drying droplets
via Euler characteristic surfaces—
a topological tool. Physics of
Fluids, 32(12):123310, 2020. doi:
10.1063/5.0026807
8 Yuliy Baryshnikov and Robert
Ghrist. Target enumeration via
Euler characteristic integrals.
SIAM Journal on Applied Mathe-
matics, 70(3):825–844, 2009. doi:
10.1137/070687293

tioned requires O(n2) edge flips, where n is the number of vertices of

S. There are known algorithms to construct the Delaunay triangula-

tion in O(n log n).

The above mentioned properties of the Delaunay triangulation make

it one of the favorite choices for a triangulation on a finite planar set

S. For example, assume you are given a collection of points modelling

a geographic profile in a small region. The points consist of coordi-

nates and elevations at these coordinates. The task is to model the

surface approximating the geographic profile. A standard solution

would be to construct the Delaunay triangulation on the set of coor-

dinate points, and then lift these points and triangles according to the

given elevations. Triangles lifted this way provide a good approxima-

tion of the geographic profile on the sampled region.

http://dx.doi.org/10.1007/978-3-540-77974-2
http://dx.doi.org/10.1063/5.0026807
http://dx.doi.org/10.1063/5.0026807
http://dx.doi.org/10.1137/070687293
http://dx.doi.org/10.1137/070687293
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Appendix: Proof of Proposition 2.5.6

Proof. Let us explain the positively oriented criterion first, see Figure

2.24. Points x, y, z form a positively oriented triple i↵ vectors �!xy,�!yz
are positively oriented, meaning that the third component of the cross

product (y1 � x1, y2 � x2, 0)⇥ (z1 � x1, z2 � x2) is positive. This third

component equals the 3⇥ 3 determinant
�������

1 x1 x2

1 y1 y2

1 z1 y2

�������
.

x

y

z

Figure 2.24: Positively oriented triple
x, y, z.

We now turn our attention to the proof of the proposition. Surpris-

ingly enough, we need to use three-dimensional geometry, see Figure

2.25 throughout the proof. Embed R2 (and points x, y, z, w) into R3

by assigning the third coordinate to be 0, i.e., x = (x1, x2, 0), etc.

Consider the graph of the function f (x, y) = x2 + y2. Lift points

x, y, z, w to the graph of f and let x0, y0, z0, w0 denote the lifted points,

i.e., x0 = (x1, x2, x2
1 + x2

2), etc. Let P denote the plane containing

x0, y0, z0.

x
y

z

x0 y0

z0

z = x2 + y2
⇧

C(x, y, z)

Figure 2.25: Proof of Proposition
2.5.6.

Let C be the intersection of the graph of f and P. Note that the

vertical projection of C onto R2 ⇥ {0} is a circle: substituting z in

z = x2 + y2 by an equation of a plane z = ax + by + c we obtain

an equation of a circle in the plane of the form x2 + y2 � ax � by �
c = 0. As this circle contains x, y, z, it coincides with C(x, y, z). It is
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geometrically apparent that w /2 B(x, y, z) i↵ w0 lies above P (the

region where the graph of f is below P is B(x, y, z)). Since x, y, z are

positively oriented, a normal of P with a positive third component

is ~n =
�!
x0y0 ⇥

�!
x0z0. Point w0 lies above P i↵ ~n ·

��!
x0w0 is positive. It is

elementary to verify that ~n ·
��!
x0w0 equals

���������

1 x1 x2 x2
1 + x2

2
0 y1 � x1 y2 � x2 y2

1 + y2
2 � (x2

1 + x2
2)

0 z1 � x1 z2 � x2 z2
1 + z2

2 � (x2
1 + x2

2)

0 w1 � x1 w2 � x2 w2
1 + w2

2 � (x2
1 + x2

2)

���������

=

���������

1 x1 x2 x2
1 + x2

2
1 y1 y2 y2

1 + y2
2

1 z1 z2 z2
1 + z2

2
1 w1 w2 w2

1 + w2
2

���������

.
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Simplicial complexes

Topological and computational treatment of metric spaces

relies on their convenient description. Given a metric space, we would

like to have a finite combinatorial description, that can be used for

computations. In the previous chapters we introduced planar triangu-

lations as an example of such a description for planar subsets. In this

chapter we will introduce simplicial complexes, which will form the

basic structure upon which all our later computations will depend.

Simplicial complexes are higher-dimensional analogues of planar

triangulations. While the latter are collections of triangles that fit

together nicely, simplicial complexes are collections of higher dimen-

sional simplices (generalizations of triangles) that fit together nicely.

Essentially we will be building spaces from simple building blocks

(simplices) given a rule describing how these blocks fit together... just

like building a castle from LEGO cubes.

Figure 3.1: Some geometric sim-
plices: a point, a line segment, a
triangle, a tetrahedron.

3.1 A�ne independence

A point, a line segment, a triangle, a tetrahedron, etc. These are

some of the geometric simplices. They are basic building blocks of

geometric simplicial complexes. A geometric simplex is a convex hull

of a finite collection of points. Before we state their formal definition

we need to clarify a general position property required of a set of

points spanning such a simplex. Under this property we want a pair of

points to span a line segment, a triple of points to span a triangle (and

not just a line segment), etc.

Choose d, k 2 N and let V = {v0, v1, . . . , vk} ⇢ Rd be a collection of

points. Their a�ne combination is any sum of the form

k

Â
i=0

aivi, with
k

Â
i=0

ai = 1.

The a�ne hull of V is the collection of all a�ne combinations of ele-
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ments of V. An a�ne hull is always an a�ne linear subspace in Rd,

meaning it is obtained from a linear subspace of Rd by a translation.

Figure 3.2: The a�ne hull of the
two points on the left is a line. The
a�ne hull of the three colinear points
on the right is also a line, implying
these three points are not a�nely
independent.

Points {v0, v1, . . . , vk} are a�nely independent if no vi can be ex-

pressed as an a�ne combination of points V \ {vi}. Proposition 3.1.1

explains how to test points for a�ne independence using linear inde-

pendence, and why each a�ne hull is a translated linear subspace.

Proposition 3.1.1. Points of V = {v0, v1, . . . , vk} ⇢ Rd are a�nely

independent i↵ {v1� v0, v2� v0, . . . , vk � v0} are linearly indepen-

dent.

x

y
z

Figure 3.3: The convex hull of three
a�nely independent points is a trian-
gle. The a�ne hull is the supporting
plane of the triangle.

Proof. Assume points of V are not a�nely independent. Then, with-

out the loss of generality, v0 = Âk
i=1 aivi and Âk

i=1 ai = 1, which

implies equality Âk
i=1 ai(vi � v0) = 0 and not all ai are zero. We

conclude that the points of V are not linearly independent.

On the other hand assume Âk
i=1 bi(vi � v0) = 0 with not all bi

being zero. We define b0 = �Âk
i=1 bi and observe that

k

Â
i=1

bivi + b0v0 = 0 and
k

Â
i=0

bi = 0.

Choose K 2 {0, 1, . . . , k} so that bK 6= 0. Then

vK =
k

Â
i=0, i 6=K

� bi
bK

vi and
k

Â
i=0, i 6=K

� bi
bK

= 1.

Hence points of V are not a�nely independent.
T A linearly independent collection
of vectors in Rd can have at most d
elements. An a�nely independent
collection of points in Rd can have at
most d + 1 elements.

Proposition 3.1.2. Suppose points of V = {v0, v1, . . . , vk} ⇢ Rd

are a�nely independent. Then for each point x 2 Conv(V) there

exist unique coe�cients ai 2 [0, 1], i 2 {0, 1, . . . , k}, such that

x =
k

Â
i=0

aivi and
k

Â
i=0

ai = 1.

Coe�cients ai in are called barycentric coordinates of point x in

Conv(V).

Proof. The existence of such coe�cients ai follows from x 2 Conv(V).

In order to prove the coe�cients are unique assume the statement

holds for two di↵erent sets of coe�cients ai and a0i, i.e.,

x =
k

Â
i=0

aivi =
k

Â
i=0

a0ivi and
k

Â
i=0

ai =
k

Â
i=0

a0i = 1.
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At some index i the coe�cients ai and a0i di↵er. Without loss of gener-

ality we can assume that index is zero, i.e., a0 � a00 6= 0. Then

(a0 � a00)v0 =
k

Â
i=1

(a0i � ai)vi

and

v0 =
k

Â
i=1

a0i � ai
a0 � a00

vi,

which contradicts the assumption that the points of V are a�nely

independent.

3.2 Geometric simplicial complex

We are now ready to define our basic building blocks.

Definition 3.2.1. Let k, d 2 {0, 1, . . .} with k  d. A geometric k-
simplex s in Rd is the convex hull of an a�nely independent fam-

ily V = {v0, v1, . . . , vk} ⇢ Rd, i.e., s = Conv(V).

Figure 3.4: A two-dimensional
simplex has six simplices as faces
(three edges and three vertices),
three of which are facets (edges).

The following is some terminology related to a geometric simplex

s = Conv({v0, v1, . . . , vk}):

• Dimension: dim(s) = k. We sometimes express it by writing it as

superscript: s = sk.

• Vertices of s: v0, v1, . . . , vk.

• Edges of s: convex hulls of pairs of vertices.

• We say that s is spanned by the set of its vertices.

• If simplex t is spanned by a subset of the vertices of s, we say that:

– t is a face of s.

– s is a coface of t.

– t is a facet of s if dim(t) = dim(s)� 1.

Note that sk ⇠= Dk. By Proposition 3.1.2 each point of s is uniquely

described by its barycentric coordinates using the vertices of s.

We can now use these building blocks to assemble more complicated

spaces.

T All our simplicial complexes
will be finite. For that reason we
will be dropping the word “finite”.
There also exist simplicial complexes
with infinitely many simplices.
However, a proper definition of
infinite simplicial complexes brings
along additional technicalities which
we want to avoid in our context.

Definition 3.2.2. Let d 2 {0, 1, . . .}. A (finite) geometric simpli-

cial complex K ⇢ Rd is a (finite) collection of geometric simplices,

such that:

a: If s 2 K and t is a face of s, then t 2 K.
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b: If s, t 2 K, then s\ t is either empty or a common face of both.

Figure 3.5: The smallest two-
dimensional simplicial complex
consists of a triangle and all its faces:
three edges and three vertices.

Each planar triangulation has a corresponding simplicial complex

consisting of all triangles, edges and vertices of the triangulation.

Let K be a simplicial complex. We define:

• Dimension dim(K) = maxs2K dim(s). A one-dimensional simplicial

complex is a graph.

• Vertices of K as the collection of all vertices of all simplices of K.

• Edges of K as the collection of all edges of all simplices of K.

• A geometric simplicial complex L is a subcomplex of K [notation:

L  K], if L ✓ K.

• For n 2 {0, 1, . . .} the n�skeleton of K [notation: K(n)] is the sim-

plicial subcomplex of K consisting of all simplices of K of dimension

at most n. For example, K(0) is the set of vertices of K.
Figure 3.6: The simplicial complex
from Figure 3.5 (left) and its 1-
skeleton (right) consisting of three
edges and three vertices.

• The body of K [notation: |K|] is the union of all simplices of K.

Formally speaking, a geometric simplicial complex in Rd is a collec-

tion of simplices and its body is a subset in Rd. In practice however

we will be often identifying the two objects in geometric discussions.

From now on we will be visualizing simplicial complexes by drawing

their body and assuming the underlying structure of asimplicial com-

plex. Figure 3.7: On the left there is
a geometric simplicial complex
presented by drawing its body. Each
edge of a sketched triangle and each
vertex of a sketched edge is assumed
to be in the complex. On the right
is the 1-skeleton of the simplicial
complex on the left.

We are now ready to describe a connection between a metric sub-

space of a Euclidean space and its combinatorial description.

Definition 3.2.3. Let d 2 {0, 1, . . .}. A triangulation of a subspace

X ⇢ Rd is a simplicial complex K in Rd, such that |K| ⇠= X.

Not every subspace of Rd admits a triangulation. However, all the

subsets that will arise in our context will admit it. Triangulations of

BR2((0, 0), 1) include examples in Figure 3.8 and Delaunay triangula-

tions. A geometric simplicial complex is a triangulation of its body.

Figure 3.8: A few triangulations of
D2.

Figure 3.9: A few triangulations of
S1.

Occasionally we will want to refine the triangulation of a space,

meaning we will want to decrease the size of simplices in order to

improve visualisation, level of details, etc. Such refinements are called

subdivisions. Given a geometric simplicial complex K, a geometric

simplicial complex L is its subdivision, if each simplex of K is the

union of a collection of simplices from L. As an example we already

mentioned the barycentric subdivision of planar triangulations, which

also exists for simplicial complexes. At this point we will refrain from

introducing its formal definition. The lower right part of Figure 3.8

depicts a subdivision of a single 2-simplex, see also Figure 3.10.



simplicial complexes 37

3.3 Abstract simplicial complex

Figure 3.10: A geometric simplicial
complex and its subdivision.

When buying a commercial object to be assembled, be it a piece of

furniture, a toy or a model made of cubes, or a picture made of puz-

zles, the package usually arrives in a big box. On the box is a picture

of the object, which in our context represents the body of a geomet-

ric simplicial complex. On the picture we can often determine pieces,

which in our setting would be geometric simplicial simplices. Pieces on

that picture have specific locations and just like geometric simplices,

could be described by specific coordinates. However, the assembly in-

structions contain no coordinates. There is a good reason for that1. 1 Besides the fact that nobody would
purchase such an item.In order to assemble the object, the instructions only provide a list

of pieces and instructions about how to put them together. That in-

formation is su�cient to reconstruct the object. Abstract simplicial

complexes play the role of such instructions.

Assume we want to describe a geometric simplicial complex. That

means we have to provide a list of all simplices. A simplex could be

provided by a list of coordinates of its vertices, but then we also have

to make sure the simplices intersect appropriately. It would be much

easier to just list the simplices and describe how they fit together in a

coordinate free way. Here is a way to do it.

Definition 3.3.1. Let V be a finite set. An abstract simplicial com-

plex L on V is a family of non-empty subsets of V, such that if s 2
L and t ✓ s is non-empty, then t 2 L.

T In some sources the non-empty
condition in the definition of an
abstract simplicial complex is omitted
and the empty set is always included
as an abstract simplex of dimension
�1.

A few more accompanying definitions using the notation of Defini-

tion 3.3.1:

• An abstract simplex s is an element of L. Its dimension is dim(s) =

|s|� 1.

• If t ✓ s 2 L, then:

– t is a face of s.

– s is a coface of t.

– t is a facet of s if dim(t) + 1 = dim(s).

• Dimension dim(L) of L is the maximal dimension of a simplex in L.

• The (closed) star of a vertex v 2 K is StK(v) = St(v) = {s 2 K |
s [ {v} 2 K}  K.

• The link of a vertex v 2 K is LkK(v) = Lk(v) = {t 2 St(v) | v /2
t}  St(v).
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Figure 3.11: A star (left) and a link
(right) of a vertex.

A geometric simplex is a subset of an Euclidean space, given as the

convex hull of the collection of its vertices. Each vertex is given as a

point in space, usually in terms of coordinates. A geometric simplicial

complex is a set of such simplices, contains all faces and has to satisfy

the intersection properties of Definition 3.2.2.

An abstract simplex is just a collection of vertices. No coordinates

are needed. An abstract simplicial complex is a set of such collections

which contains all faces (all subsets of its elements). There are no

intersections to be checked. It is a complete and convenient combina-

torial description.

Example 3.3.2. Let K be a geometric simplicial complex provided by

Figure 3.12. As a geometric simplicial complex, K contains specific

geometric simplices described by the coordinates of their vertices. We

can construct a corresponding abstract simplicial complex L. Label the

vertices as demonstrated by the figure. Then

L = {{a, c, d}, {a, b}, {b, c}, {c, d}, {d, a}, {a, c}, {a}, {b}, {c}, {d}}.

No coordinates are involved. We could also only list the inclusion-

maximal simplices, which completely determine the simplicial complex:

{{a, c, d}, {a, b}, {b, c}}.
a

b

c

d

Figure 3.12: A picture accompanying
Example 3.3.2.

A simpler structure of an abstract simplicial complex will su�ce

for most of our topological analysis of spaces and the corresponding

computations. Indeed, it will simplify them. A geometric simplicial

complex however is still useful when we want to visualise a complex.

For example, outputs of various scans come in the form of geometric

simplicial complexes modelling the scanned shape. While geometric

simplicial complexes describe geometric information about the space

(various sizes, lengths, etc.), abstract simplicial complexes contain only

topological information (homeomorphism type).

It is easy to turn a geometric simplicial complex into an abstract

simplicial complex: replace each coordinate given vertex by a unique

label. The opposite is a bit harder. Turning an abstract simplicial

complex into a geometric simplicial complex requires us to choose co-

ordinates of vertices in line with the requirements for a geometric sim-

plicial complex. If it can be done, such a geometric simplicial complex

is called a geometric realization (or just realization) of the original

abstract simplicial complex. It turns out that geometric realizations

always exists, although obtaining them in a low-dimensional space is

typically hard. The following are two special cases of such realizations.
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Theorem 3.3.3. Every abstract simplicial complex K with n vertices

admits a geometric realization in Rn�1.

Proof. Simplicial complex K is a subcomplex of the full simplicial

complex L on n vertices, i.e., the simplicial complex, whose simplices

are all subsets of vertices of K. As L admits a realization in Rn�1 as

an (n � 1)-simplex (i.e., the convex hull of a collection of n a�nely

independent points), so does K as its subcomplex.

x1 x2 x3

y1 y2 y3
Figure 3.13: A sketch of a one-
dimensional abstract simplicial
complex (graph) with no realization
in R2. The complex consists of all
edges between xi and yj.

Theorem 3.3.4. Every abstract simplicial complex of dimension d ad-

mits a geometric realization in R2d+1.

A proof of Theorem 3.3.4 is provided in Appendix.

As an example consider graphs, i.e., one-dimensional simplicial

complexes. It is well known that some graphs are planar, which means

they admit a geometric realization in the plane. However, there are

graphs, that are not planar. These graphs can only be realized in

R3 = R2·1+1 (and, of course, in Rm for m > 3). See Figure 3.13.

One of the goals of this course is the following: given an abstract

simplicial complex, extract topological properties of its geometric

realization. We will study and analyze spaces by working with their

triangulations.
a b

c

Figure 3.14: A metric space
(left) and the corresponding
geometric simplicial complex
(right). The correspond-
ing abstract simplicial complex is
{{a, b, c}, {a, b}, {b, c}, {a, c}, {a}, {b}, {c}}.

Remark 3.3.5. It is important to understand the di↵erences between

a metric space, its triangulation and a corresponding abstract simpli-

cial complex. In practice however, we will be frequently vague in our

expression for the sake of simplicity, ofter referring to just simplicial

complex. Given a picture of a space like the one in Figure 3.12, we

will keep in mind the three possible interpretations and use the one

that fits the context at the moment.

Also note that the terminology is essentially the same for the ab-

stract and geometric simplicial complexes. We declare this to be the

case for all further2 definitions as well. For example, an abstract 2 Including the concepts of link and
star of a complex at a point.simplicial complex L is a triangulation of a metric space X if the

corresponding geometric simplicial complex is, i.e., if the body of a

geometric realization of L is homeomorphic to X.

Figure 3.15: Torus.

Example 3.3.6. One of our standard examples of a metric space will be

the torus T. It is a two-dimensional metric space, actually a surface,

depicted in Figure 3.15. A triangulation of T in terms of an abstract

simplicial complex is provided by Figure 3.17.

Topologically speaking, the torus can be obtained from a square by

identifying the opposite sides along the same direction. This construc-

tion is depicted in Figure 3.16.
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a

a

b b

a

b b

b b

b

Figure 3.16: The torus arising from a
square. Starting with a square (top
left) we identify its pairs of opposite
sides along the same direction as the
labels and arrows suggest. Identify-
ing the sides a we obtain a cylinder
(top right). Identifying the other
pair of sides, which represent loops b
in the cylinder, we obtain the torus
(bottom right).

As a result we can obtain a structure of an abstract simplicial com-

plex by triangulating a square and respecting the mentioned identifica-

tions. This provides a convenient topological visualisation of a torus.

Observe that a triangulation of T in terms of a geometric simplicial

complex would be more complicated and not presentable in the plane.

x

y

z

x

x

y

z

xv w

v w
Figure 3.17: A triangulation of
a torus in terms of an abstract
simplicial complex.

The mentioned abstract simplicial complex is provided by Figure

3.17. We divide the square into 18 triangles and keep in mind the

identifications suggested by the arrows. The two sides of the square

along the single arrows get identified along the direction of the arrows,

and the same holds for the two sides along the double arrows. For the

sake of clarity we also labeled the outer vertices of the triangles as each

label appears at least twice due to the identifications.

Example 3.3.7. Choose n 2 {1, 2, . . .}. In this example we provide the

simplest triangulations of discs and spheres.

Let sn be an n-simplex and define K to be the simplicial complex

whose only maximal simplex is sn, i.e., K contains sn and all of its

faces. Simplicial complex K is a triangulation of Dn.

To obtain a triangulation of Sn�1 remove from K the maximal sim-

plex, i.e., K0 = K \ {sn}. Simplicial complex K consists of all faces of

sn but does not contain sn itself. Simplicial complex K0 is a triangula-

tion of Sn�1. Figure 3.18: A triangle as a trian-
gulation of D2 and its boundary as
a triangulation of S1. In a similar
way a solid tetrahedron is a triangu-
lation of D3 while its boundary is a
triangulation of S2.

Two invariants

Here we provide two invariants (of a space) that can be extracted

from a triangulation. Both are homotopy invariants (and hence also
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topological invariants), meaning they coincide for homotopically equiv-

alent spaces. A space typically has infinitely many possible triangu-

lations. Imagine all possible Delaunay triangulations in R2: they are

all triangulations of D2. We conclude that the numbers of vertices,

edges, or higher dimensional simplices in a triangulation cannot be

topological invariants.

Figure 3.19: A complex with two
components.

The first invariant is the number of components. Given a triangula-

tion K, it is easy to extract that number from K(1) (which is a graph)

using standard approaches of graph theory. Later we will explain in

detail how to obtain this number in terms of homology. For example,

the simplicial complex in Figure 3.19 has two components.

The second invariant is the Euler characteristic, which can be de-

fined for simplicial complexes.

Definition 3.3.8. Suppose K is a simplicial complex and let ni denote

the number of i-simplices in K. The Euler characteristic c(K) 2
Z is defined as c(K) = n0 � n1 + n2 � n3 + . . . .

The Euler characteristic of a metric space is the Euler character-

istic of any of its triangulations.

Figure 3.20: A series of homotopic
simplicial complexes, each di↵er-
ing from the previous one by a
small modifications. Note that the
modifications preserve the Euler
characteristic. In the first step we
add a vertex and an edge; in the sec-
ond step we add a vertex, two edges
and a triangle; and so on. Each new
addition contributes a total of 0 to
the Euler characteristic.

As was mentioned above, the Euler characteristic is homotopy

invariant. Using this fact we can compute the following cases:

• Let X be a one-point space. Then c(X) = 1. Since each Delaunay

triangulation K in R2 is homotopic to a point (meaning that |K| '
X), we also conclude c(K) = 1, a statement which we have already

proved directly. In fact, the homotopy invariance implies that each

triangulation of a contractible space is of Euler characteristic 1.

• The Euler characteristic of a torus is 0. It can be computed di-

rectly from the triangulation presented by Figure 3.17, which has 18
triangles, 27 edges and 9 vertices (keep in mind the identifications).

• Let n 2 {0, 1, 2, . . .}. Then c(Sn) = 1 + (�1)n.

Proof. Let sn+1 be an (n + 1)-simplex and define K to be the

simplicial complex whose only maximal simplex is sn+1. As we

know K is a triangulation of Dn+1. As Dn+1 is contractible, c(K) =

1. We also mentioned that K0 = K \ sn+1 is a triangulation of Sn.

As K0 is obtained from K by removing an (n + 1)-simplex, c(K0)
is obtained from c(K) by removing a contribution of that simplex,

which is (�1)n+1. Hence c(Sn) = 1� (�1)n+1 = 1 + (�1)n.

T c(Sn) could also be computed from
the triangulation K0 directly using the
binomial formula.
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3.4 Simplicial maps

Just as simplicial complexes provide a convenient combinatorial

description of metric spaces, simplicial maps provide a combinatorial

description of continuous maps. We first define them in the abstract

setting.

Definition 3.4.1. Suppose K and L are abstract simplicial complexes.

A simplicial map between K and L is an assignment f : K(0) ! L(0)

on vertices, such that for each abstract simplex {v0, v1, . . . , vk} 2 K
its image { f (v0), f (v1), . . . , f (vk)} is an abstract simplex in L.

,!

Figure 3.21: An embedding of a
simplicial subcomplex L  K into K is
identity on the vertices and always a
simplicial map.

Remark 3.4.2. A simplicial map will be usually denoted by f : K ! L.
However, since K and L are collections of sets, such a notation would

formaly include maps that map, say, a vertex to an edge, a highly

unfavourable occurence. When talking about simplicial maps K ! L
we thus always consider only maps in the sense of Definition 3.4.1,

i.e., maps that map a vertex to a vertex, while images on simplices are

always determined by the values on the vertices:

• For each vertex v 2 K we define a corresponding vertex f (v).

• For each abstract simplex s = {v0, v1, . . . , vk} 2 K its image

f (s) = { f (v0), f (v1), . . . , f (vk)} is determined by the values on its

vertices.

• Note that f (s) is a set, meaning there are no repetitions of ele-

ments. In particular this means that each vertex appears at most

once in f (s), even if it appears multiple times as f (vi). As a re-

sult the image of an n-dimensional simplex can be of dimension less

than or equal to n, but never more than n.

Example 3.4.3. Let K be the simplicial complex in Figure 3.22. Assign-

ment a 7! a; b 7! c; c 7! c; d 7! d; e 7! b can be verified

to induce a simplicial map K ! K. Note that triangle {a, b, c} gets

mapped to edge {a, c}.
a

b

c

d

e

Figure 3.22: Simplicial complex K of
example 3.4.3.

We are now ready to define simplicial maps in the geometric set-

ting.

Definition 3.4.4. Suppose K and L are geometric simplicial complexes.

A map f : K ! L is a simplicial map, if:

1. For each vertex v of K its image f (v) is a vertex of L.

2. The corresponding map between the corresponding abstract sim-

plicial complexes is simplicial, i.e., if {v0, v1, . . . , vk} span a geo-
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metric simplex in K then { f (v0), f (v1), . . . , f (vk)} span a geomet-

ric simplex in L.

3. Map f is linear on simplices (in terms of barycentric coordinates),

i.e.,

8ti 2 [0, 1],
k

Â
i=0

ti = 1, 8vi 2 K(0) : f (
k

Â
i=0

tivi) =
k

Â
i=0

ti f (vi).

Given a simplicial map between geometric simplicial complexes the

induced map (i.e., the restriction to vertices) between abstract simpli-

cial complexes is simplicial. Conversely, each simplicial map between

abstract simplicial complexes corresponds to the unique simplicial

map between the corresponding geometric simplicial complexes: the

extension from vertices to geometric simplices is defined using the for-

mula of item 3 of Definition 3.4.4. In accordance with our declarations

simplicial maps will be used to denote maps either in geometric or

abstract setting: in case of a preferred interpretation it will be stated

explicitly or should be obvious from the context.

Simplicial maps between geometric simplicial complexes are con-

tinuous maps as they are linear (hence) continuous on each simplex.

Surprisingly enough, each continuous map can be (up to homotopy)

represented by a simplicial map, which means that as long as we are

interested in homotopical properties, we can restrict ourselves to sim-

plicial maps.

Figure 3.23: The upper part of the
figure presents a simplicial com-
plex K. The middle part consists
of a smooth curve (bold) given by
a continuous map f : S1 ! K, su-
perposed on the simplicial complex.
The bottom part consists of a sim-
plicial approximation (bold red)
of the curve superimposed on the
simplicial complex and the curve.
The indicated simplicial approxima-
tion requires a triangulation of the
domain S1 with at least 12 edges.

Theorem 3.4.5. Suppose f : K ! L is a continuous map between ge-

ometric simplicial complexes. Then there exist su�ciently fine sub-

divisions K0 of K and L0 of L, and a simplicial map f 0 : K0 ! L0,
such that f ' f 0. We call f 0 a simplicial approximation of f .

The subdivisions above can be taken to be su�ciently fine barycen-

tric subdivision. A continuous map between simplicial complexes is

formally a map between the bodies of the simplicial complexes. In this

sense both f and f 0 map |K| = |K0| to |L| = |L0| hence f ' f 0 makes

sense.

Elementary collapses

Elementary collapses are minor local modifications of simplicial

complexes, which preserve its homotopy type. Conveniently enough,

they can be described in purely combinatorial terms. Their impor-

tance stems from the following lemma.

Lemma 3.4.6. Let K be a geometric simplicial complex containing

simplex s = {v0, v1, . . . , vk} and let t = {v1, . . . , vk} be its facet. If
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s is the only coface3 of t, then the inclusion i : K \ {t, s} ,! K is a 3 i.e., a simplex which contains t.

homotopy equivalence.

Proof. The proof is sketched in Figure 3.24.

We first need to subdivide s and t. Choose a point a in the middle

of t and connect it to all vertices of s. This induces a subdivision of s

and t and in fact of K as no other simplex contains4 s or t. 4 If there was another simplex con-
taining s, then that simplex would
have been a coface of t, which con-
tradicts our assumptions. In particu-
lar, If s is the only coface, then t is
a facet of s. This fact also refers to
conditions of Definition 3.4.7.

In order to obtain a continuous deformation5 from K to K \ {t, s},

5 Homotopy equivalence.

slide a towards v0. This sliding is a linear homotopy and can be easily

described in the barycentric coordinates of the new subdivision of

K.

�⌧ v0a

Figure 3.24: Elementary collapse
from Lemma 3.4.6 with s being the
triangle and t its left side.

Definition 3.4.7. Let K be a simplicial complex, t(k�1) ⇢ s(k) 2 K,

and assume s is the only coface of t. A removal K ! K \ {t, s}
is called an elementary collapse.

Figure 3.25: The elementary collapse
of Figure 3.24 is usually indicated by
an arrow from t into s.

By Lemma 3.4.6 each elementary collapse preserves the homotopy

type of a complex. Note that the collapsing map K ! K \ {t, s}
is not6 a simplicial map on K. It is, however, a simplicial map on

6 Except if t is a vertex.

the subdivision of K employed in Lemma 3.4.6, defined by mapping

a 7! v0 and keeping all the other vertices intact. Its homotopy inverse

is the inclusion K \ {t, s} ,! K, which is a simplicial map.

Elementary collapses are convenient because they provide us with a

simple combinatorial condition that can be used to induce homotopy

equivalence on abstract simplicial complexes. This idea will be further

expanded later within the context of discrete Morse theory.



simplicial complexes 45

Figure 3.26: An example of a simpli-
fication of (the homotopy type of) a
simplicial complex using elementary
collapses.

3.5 Concluding remarks

Recap (highlights) of this chapter

• Geometric simplex;

• Geometric simplicial complex;

• Abstract simplicial complex;

• Geometric realization;

• Simplicial map;

• Simplicial approximation and elementary collapse.

Background and applications

Simplicial complexes model spaces in a wide spectrum of theory and

applications. Great portions of topology and geometry are based on

them due to their simple structure and amenability to combinatorial

treatment. On the applied side simplicial complexes are typically used

to model shapes.

The notions introduced in this chapter are covered in standard

books on topology7. 7 James Munkres. Elements of
Algebraic Topology. Perseus Books,
1984. doi: 10.1201/9780429493911

Appendix: Proof of Theorem 3.3.4

Before we begin with the proof we clarify a fact that will be used.

A generic8 (random) collection of n + 1 points in Rn is a�nely inde- 8 Notion “generic” as used in this
appendix is usually referred to as
“general linear position” in the
literature.

pendent. Geometrically this is easy to believe:

• Generic two points in R will be di↵erent;

• Generic three points in R2 will not be colinear;

• Generic four points in R3 will not be coplanar.

Similarly, even for k > n + 1 a generic set V of k points in Rn has

the same property: each collection of n + 1 points in V is a�nely

http://dx.doi.org/10.1201/9780429493911
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independent. For example, in a generic collection of points in the

plane no triple of points will be collinear. We will only use the fact

that generic collections exist. This fact can be proved using linear

algebra.

Figure 3.27: A generic collection of 5
points in the plane, meaning that no
three are collinear. Only by adding
a point on any grey line does the
generic condition brake. If we add
any other point to this collection, the
obtained collection of 6 points is still
generic.

Proof of Theorem 3.3.4. Let K be an abstract simplicial complex

of dimension d, whose vertices are v0, v1, . . . , vk. Choose a generic

collection of points V = {x0, x1, . . . , xk} ⇢ R2d+1, meaning that each

collection of 2d + 2 points from V is a�nely independent. We will

prove that the correspondence vi $ xi for all i 2 {0, 1, . . . , k} provides

a geometric realization of K.

For each abstract simplex s 2 K spanned by vj0 , vj1 , . . . , vjm , the

corresponding geometric simplex s0 is spanned by the a�nely indepen-

dent collection xj0 , xj1 , . . . , xjm . It remains to prove that if s, t 2 K,

then s0 \ t0 = (s \ t)0.

As (s \ t)0 ✓ s0, t0 by the definition, we have s0 \ t0 ◆ (s \ t)0.

To prove the other inclusion we will make use of the dimension

assumption. Let z 2 s0 \ t0, which means that z can be expressed as a

convex combination of vertices in s0 and also as a convex combination

of vertices in t0. As the total number of vertices in t0 and s0 is at

most 2n + 2 (by the dimension assumption), the generic condition

implies these are a�nely independent, and thus the convex (a�ne)

combinations above coincide as they have to be unique by Proposition

3.1.2. In particular, this means that only the barycentric coordinates

corresponding to the vertices that lie in both simplices (i.e., s \ t)

can be non-zero, which implies z 2 (s \ t)0 and hence s0 \ t0 ✓
(s \ t)0.
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Surfaces

Surfaces are some of the simplest topological spaces appearing

frequently in science and data analysis. From each local perspective

appearing as a part of the plane, the global shape of a surface may

take many forms. Think of the surface of the earth: because it appears

to be “planar” at each point, it had long been believed that Earth is

actually a part of a plane or maybe a disc instead of a sphere.

Surprisingly enough, most surfaces of interest can be recognized

up to homeomorphism fairly easily. In this chapter we explain this

recognition process and the accompanying theory, both of which will

come handy in the chapters to come.

4.1 Surfaces as manifolds

Ever since the ancient times people were wondering about the shape

of the world. They agreed that from the perspective of a human be-

ing, the world looked like a plane, a part of a surface. What was much

harder to figure out was the global picture. The first and most obvious

idea was that the world was a flat disc. Later came indications, such

as deviations in the angle of the shadow depending on the latitude,

that the world might be curved. Magellan’s first circumnavigation of

Earth does not constitute a rigorous proof that the world is a sphere

by modern mathematical standards, but at the time it was a momen-

tous achievement which confirmed that the Earth is indeed round.

Figure 4.1: Some of the surfaces we
mentioned before: a planar set (top
left), a space homeomorphic to S2

(top right), Moebius band (center
left), cylinder (center right), and
torus (bottom).

While we will not be sailing around the world in this course, we will

be interested in the moral of this story: things that locally look like

a plane may globally not be a plane. We will want to determine the

global structure from local information.

Spaces that locally look like a plane are called surfaces and their

generalizations to other dimensions are called manifolds. Here is a

formal definition.
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Definition 4.1.1. Let n 2 {0, 1, 2, . . .}. A metric space X is an n-
manifold, if for each x 2 X there exists r > 0, such that BX(x, r)
is homeomorphic to the n-dimensional disc Dn.

Figure 4.2: A neighborhood of a
point on S2 homeomorphic to B2

a

a

b b

a

b b

b b

Figure 4.3: Klein bottle obtained
by identifying the edges of a square:
two along the same direction and
two along the opposite direction.
The resulting space (bottom right) is
not realizable in R3 due to the self-
intersection. However, Klein bottle
can be embedded into R4 without
self-intersections.

2-manifolds are called surfaces.

Point x on an n-manifold X is:

• a boundary point if a homeomorphism BX(x, r) ! Dn from Defini-

tion 4.1.1 maps x to a point on the boundary of Dn.

• an interior point if a homeomorphism BX(x, r) ! Dn from Defini-

tion 4.1.1 maps x to a point in the interior of Dn.

These two notions are independent of the choice of homeomorphism

BX(x, r) ! Dn. Each point of X is either a boundary point or an

interior point. The boundary of X consists of all the boundary points,

and the interior of X consists of all the interior points.

We say that a manifold X is without boundary, if it has no bound-

ary points. For an n-manifold Y its boundary is an (n � 1)-manifold

without boundary, as can be seen from the examples below. For our

purposes a closed manifold (closed surface) will be a manifold (surface)

without boundary admitting a (finite) triangulation.

a

a

b b

Figure 4.4: Projective plane ob-
tained by identifying the edges of a
square: both pairs along the oppo-
site direction. The resulting space
is not realizable in R3. However, it
can be embedded into R4 without
self-intersections.

Example 4.1.2. We provide some examples of connected n-manifolds

listed by dimension n.

• n = 0: This one is fairly unimpressive: a single point.

• n = 1: Circle and intervals (0, 1), [0, 1], (0, 1]. Each connected 1-
manifold is homeomorphic to one of these. A circle and an open

interval have no boundary, while the boundary of [0, 1] consists1 of 0

1 Also, the boundary of [0, 1) is 0.

and 1.

• n = 2: We will provide a list of all surfaces by the end of this

chapter. Here we list some of the more prominent ones. The already

mentioned ones are recapped in Figure 4.1: note that the boundary

of the band consists of two copies of S1, while the Moebius band has

a single boundary component. A closed disc D2 is also a surface,

whose boundary is S1.

Closely related to the torus are the Klein bottle (see Figure 4.3)

and the projective plane, neither of them has a boundary and

neither can be obtained as a subset of R3. However, they can be

obtained as subsets of R4. While these two spaces are challenging

to imagine geometrically, it is fairy easy to provide their (abstract)

triangulations (see Figure 4.3) and compute some of their topologi-

cal invariants, such as the Euler characteristic. The Torus and the
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Klein bottle have Euler characteristic 0, while the Euler characteris-

tic of the projective plane is 1.

The projective space is homeomorphic to the space of all 1-dimensional

subspaces in R3.

x

y

z

x

x

z

y

xv w

v w

x

y

z

q

q

z

y

xw v

v w
Figure 4.5: Triangulations of the
Klein bottle (top) and the projective
plane (bottom).

• General n: Dn and Sn are both n-manifolds. The boundary of Dn is

Sn�1, while Sn has no boundary. There are many other n-manifolds.

Combinatorial manifolds

We will mostly be working with triangulated manifolds. A natural

question that arises in this context is how to recognize whether a given

simplicial complex is a triangulation of a manifold. Tackling this task

we first introduce nice combinatorial descriptions of manifolds.

Definition 4.1.3. Suppose K is a simplicial complex and n 2 N. We

say that K is a combinatorial n-manifold, if for each vertex v 2
K its link Lk(v) is homeomorphic either to Sn�1 or Dn�1.

Properties and notation:

• Each combinatorial n-manifold is a triangulation of an n-manifold.

• For n < 4, each n-manifold admits a triangulation as a combinato-

rial n-manifold2.
2 Surprisingly enough, this does not
hold for n � 4• Vertices of a combinatorial manifold K satisfying Lk(v) ⇠= Dn�1 are

called boundary vertices.

• Vertices of a combinatorial manifold K satisfying Lk(v) ⇠= Sn�1 are

called interior vertices.

• Edges of a combinatorial surface K that are contained in only one

triangle are called boundary edges. The union of the boundary

edges corresponds to the boundary of the manifold.

• Edges of a combinatorial surface K that are contained in two trian-

gles are called interior edges. No edge in a combinatorial surface is

contained in more than two triangles.

Figure 4.6: Triangulation of the
Klein bottle (top) and of the Moe-
bius band (bottom). In the top
triangulation each vertex is an in-
terior vertex as each link (bold) is
homeomorphic to S1. In the bottom
case each vertex is a boundary vertex
as each link (bold) is homeomorphic
to B1.

Using these properties it is fairly easy to recognize whether a given

simplicial complex K is a combinatorial surface and thus a triangu-

lation of a surface: for each vertex v 2 K we verify whether Lk(v)

is homeomorphic to S1 or D1. It is easy to see that a connected 1-

dimensional simplicial complex is homeomorphic to:

• S1 i↵ each of its vertices is contained in two edges.
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• D1, i.e., the line segment, i↵ two of its vertices are contained in one

edge, and all other vertices are contained in two edges.

We will leave the elementary proofs of these two facts to the reader.

4.2 Orientability

Orientability is about defining “up and down”. It is quite easy to

agree on the two directions on the surface of the earth. However, in

general that may not be the case for all surfaces. Consider the cylinder

from Figure 4.1. It is orientable because we can define two di↵erent

sides of it. To put it into a more colorful language, we can color one

side of the band in red and the other side in blue, without the colors

ever touching each other. The story is di↵erent on the Moebius band:

it has only one side. We could start coloring it in red at some spot

and keep expanding the color along the surface (but not across the

boundary): eventually we will color the whole band, i.e., there is no

“other” side. x

y

x

y

x

y

Figure 4.7: The edge {x, y} (left) and
the oriented edges hx, yi (center) and
hy, xi = �hx, yi (right).

x y

z

x y

z

x y

z

Figure 4.8: The triangle {x, y, z}
(left) and the oriented triangles
hx, y, zi = hy, z, xi = hz, x, yi (center)
and hy, x, zi = hx, z, yi = hz, y, xi =
�hx, y, zi (right).

Orientability is an important property of surfaces. It will be re-

quired for our classification result. In order to fully understand it we

have to define orientation for simplices first. Besides its application

in this section orientation on simplices will feature prominently later

within the context of homology computation.

Up to now a simplex was given by a set of its vertices. An oriented

simplex is a simplex with a choice of orientation. For an edge that

means direction, for a triangle that means “a normal” (see Figures 4.7

and 4.8). This direction/orientation will be described by a choice of an

order on vertices.

Definition 4.2.1. An oriented simplex on vertices v0, v1, . . . , vk is

an ordered (k + 1)-tuple s = hv0, v1, . . . , vki. For a permutation p

on {0, 1, . . . , k} we identify:

s = (�1)sgn(p)hvp(0), vp(1), . . . , vp(k)i,

where sgn(p) is the signature of permutation p, i.e., value 0 if p is

even and value 1 if p is odd.

A 0-dimensional simplex with vertex v can also be oriented in two

ways: as hvi and as �hvi.

Figures 4.7 and 4.8 provide examples of descriptions of oriented

edges and triangles, and their geometric interpretations. Here are some

properties that follow from Definition 4.2.1:

• Each simplex on vertices v0, v1, . . . , vk can be oriented in two di↵er-

ent ways: s = hv0, v1, . . . , vki and �s.
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• An oriented simplex has a sign + (usually omitted) or � prepended.

• Exchanging two vertices in an oriented simplex t changes the orien-

tation of t by changing the prefixed sign.

An important property of an oriented simplex is that it induces an

orientation on each of its facets.

Definition 4.2.2. Suppose s = hv0, v1, . . . , vki is an oriented simplex

and p 2 {0, 1, . . . , k}. Then induced orientation of the facet of

s obtained by dropping vp is

(�1)phv0, v1, . . . , vp�1, vp+1, . . . , vki. x y

z

x y

z

Figure 4.9: Oriented triangle hx, y, zi
(left) and induced orientation on the
edges (right): hx, yi, hy, zi, and hz, xi.
Note that the edges are oriented
along the direction of the circular
arrow indicating the orientation of
the triangle.

Oriented edge hx, yi induces orientations hyi and �hxi on its facets

(vertices). Oriented triangle hx, y, zi induces orientations hy, zi,�hx, zi
and hx, yi on its facets (edges), see Figure 4.9.

Figure 4.10: Consistent orientation:
note that the orientations of the
triangles agree (both directed circular
arrows point counter-clockwise). This
implies that the induced orientations
on the common edge are opposite to
each other.

Now that we established a way to orient a single simplex, we turn

our attention to orienting the whole surface.

Definition 4.2.3. Suppose oriented 2-simplices s and s0 share a com-

mon edge. Simplices s and s0 are oriented consistently, if they in-

duce the opposite orientation on the common edge. (see Figure 4.10)

Definition 4.2.4. Let K be a triangulation of a surface |K|. We say

that |K| is oriented, if all triangles of K are oriented (as simplices)

so that the following holds: each pair of oriented triangles with a com-

mon edge is oriented consistently.

A surface is orientable if it can be oriented.

Orientability of a surface does not depend on a triangulation but on

the topological type of the surface only. The following are two basic

examples that demonstrate the underlying geometric idea.

Example 4.2.5. The cylinder S1 ⇥ [0, 1] is orientable as Figure 4.11

demonstrates. To the contrary, the Moebius band is not orientable

as Figure 4.12 demonstrates. Since the Klein bottle and the projec-

tive plane both contain a copy of the Moebius band (any of the three

horizontal strips of triangulations in Figure 4.5), neither of them is

orientable. x

y

x

y

Figure 4.11: Orientable triangula-
tion of a usual band. The oriented
simplices induce the opposite orien-
tation on all the edges, including the
edge {x, y}, along which the glueing
occurs.

As Example 4.2.5 and Figure 4.12 suggest it is fairly easy to check

whether a connected triangulated surface is orientable. This can be

done directly by orienting one triangle and then inductively orienting

all neighboring triangles with shared edges, while checking that each

newly oriented triangle is oriented consistently with respect to the

already oriented triangles.
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x y

y x

x y

y x

x y

y x

x y

y x

!

Figure 4.12: A proof that the Moe-
bius band is not orientable. Assume
we want to orient a triangulation of
the Moebius band on the left. We
first choose an orientation of one
triangle (far left) and then induc-
tively induce consistent orientation
on the neighboring triangles. In the
end (far right) we obtain conflicting
requirements on the orientation on
the last (bold) triangle, which means
there is no consistent way to orient
all the triangles in this triangulation.

Figure 4.13: Two tori (top) and their
connected sum (bottom) obtained by
identifying the boundaries of the two
removed discs (center).

4.3 Connected sum of surfaces

One of the ways to make new surfaces (and actually manifolds in

general) out of known ones is the connected sum.

Definition 4.3.1. Suppose X and Y are connected surfaces. Choose

topological 2-discs DX ⇢ X and DY ⇢ Y, neither of which contains

any boundary point of the surfaces. The corresponding boundaries of

these discs are topological 1-spheres (circles) SX ⇢ X and SY ⇢ Y
respectively. The connected sum X#Y is obtained by removing the

interiors of discs DX and DY from X and Y, and gluing the result-

ing spaces by identifying SX with SY.

See Figure 4.13 for a sketch of this construction. A few technical re-

marks about connected sums as defined above:

• It turns out that the topological type of X#Y does not depend on

the choice of discs DX , DY.

• A connected sum is a surface, whose boundary components cor-

respond to the union of the boundary components of X and the

boundary components of Y.
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• Surfaces X and Y are both orientable i↵ X#Y is orientable.

• For each surface X, the following holds: X#S2 ⇠= X.

If abstract simplicial complexes K and L are triangulations of sur-

faces X and Y respectively and X \ Y = ∆, we can obtain a triangula-

tion M of X#Y in the following way:

1. Choose triangles DX and DY in K and L respectively, so that no

point of these two triangles lies on the boundary of X or Y.

2. Define

M = (K \ {DX}) [ (L \ {DY})/ ⇠,

where ⇠ stands for the identification of each of the boundary edges

of DX with an appropriate boundary edge of DY.

In short, M is obtained by removing DX and DY from the union of K
and L, and then identifying the boundaries of the removed triangles.

This procedure is a discrete version of the one in Definition 4.3.1.

Proposition 4.3.2. c(X#Y) = c(X) + c(Y)� 2.

Proof. Assume abstract simplicial complexes K and L are triangula-

tions of surfaces X and Y respectively and K \ L = ∆. It is obvious

that c(K [ L) = c(K) + c(L). In order to obtain a triangulation of

X#Y from K [ L, we:

• Remove two triangles (change �2 to the Euler characteristic);

• Identify three pairs of vertices, meaning we have three vertices less

(change �3 to the Euler characteristic);

• Identify three pairs of edges, meaning we have three edges less

(change +3 to the Euler characteristic);

The total change to the Euler characteristic after these steps is �2.

4.4 Classification of surfaces

We can now describe the classification of surfaces. Let T denote the

torus and let P denote the projective plane.

a

a

b b

Figure 4.14: The three closed con-
nected surfaces (the sphere S2, the
torus T and the projective plane P),
that are used to construct any other
closed connected surface using the
connected sum operation.
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Theorem 4.4.1. [Classification Theorem for closed connected surfaces]

Suppose X is a closed connected surface. Then X is homeomorphic

to one of the following:

1. S2.

2. n-torus nT = T#T# . . . #T| {z }
n

for some n 2 N.

3. nP = P#P# . . . #P| {z }
n

for some n 2 N.

It turns out that the surfaces appearing in Theorem 4.4.1 can be

distinguished using orientability and the Euler characteristic. From the

properties of the connected sum recall that (for each n 2 N) S2 and

nT are orientable while nP are not. Furthermore, using Proposition

4.3.2 and we can inductively deduce3 : 3 Using Proposition 4.3.2 we can
deduce c(2T) = c(T#T) = c(T) +
c(T)� 2 = 0 + 0� 2 = �2, c(3T) =
c(T) + c(T#T)� 2 = 0 +�2� 2 = �4,
and proceed inductively. The proof
for nP is analogous.

• c(nT) = 2� 2n as c(T) = 0.

• c(nP) = 2� n as c(P) = 1.

Consequently we obtain the following table of connected closed

surfaces.

Surface c

S2 2
9
=

;orientableT 0
nT 2� 2n
P 1

�
not orientablenP 2� n

Table 4.1: A list of closed connected
surfaces along with their Euler
characteristic and orientability.

Theorem 4.4.1 motivates the following classification algorithm for a

closed connected surface given as an abstract simplicial complex4 K: 4 I.e., we assume the triangulation
K is a connected combinatorial
2-manifold and has no boundary
components.

1. Check for orientability of K.

2. Compute the Euler characteristic.

3. Consult Table 4.1.

T A shortcut to computing c: while
the Euler characteristic is formally
defined on a triangulation, it turns
out it can also be obtained from the
representation of a surface in terms
of a polygon with identified sides.
For example, the representations
of the torus in Figure 4.14 and
Klein bottle of Figure 4.3 have
one 2-dimensional square, two 1-
dimensional edges, and one vertex,
yielding c = 2. The representation
of the projective plane in Figure
4.4 has one 2-dimensional square,
two 1-dimensional edges, and two
vertices, yielding c = 1. This trick
could assist with Figure 4.15. A
justification will be provided in the
chapter on discrete Morse theory.

Example 4.4.2. Which of the surfaces in Theorem 4.4.1 is the Klein

bottle? We have already discovered that it is not orientable and that

its Euler characteristic is 0. By the Classification Theorem the Klein

bottle is homeomorphic to P#P.

General surfaces

Theorem 4.4.1 can also be used to classify general surfaces admit-

ting a finite triangulation. Suppose X is a surface:
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1. If X is not connected, it is a disjoint union of connected surfaces

and it obviously su�ces to recognize each of its components.

2. If X is connected and has a boundary Y, then Y is a 1-manifold

without boundary, meaning Y is a disjoint union of k copies of S1

for some k 2 N. By glueing a disc along each component of Y we

obtain a closed connected surface X0, which we can recognize 5. We 5 Such a gluing of discs does not
change the orientation, i.e., X is
orientable i↵ X0 is. However, an
addition of each disc increases the
Euler characteristic by 1.

conclude that X is homeomorphic to X0 with k discs removed6.

6 It turns out that the homeomorphic
type does not depend on the discs
we remove from X0, only on their
number.

Example 4.4.3. It is easy to see that the cylinder S1 ⇥ [0, 1] is obtained

from S2 by removing two discs. It is a bit harder to see how to get the

Moebius band M this way. It is easy to see that M has one boundary

component and has Euler characteristic7 0. Gluing a disc along the
7 We could count the simplices in
Figure 4.12.

boundary component we obtain a closed connected non-orientable sur-

face of Euler characteristic 1, which is P. Hence the Moebius band is

obtained by removing a disc from the projective plane.

a

a

b

b

c

c

d

d

f

e

f e

Figure 4.15: Which surfaces are
these?

We are now ready to state a classification algorithm for a surface

given as an abstract simplicial complex K:

1. Partition K into its connected components and classify each of

them.

2. For each component K0:

(a) Count the number n(K0) of boundary components of K0.

(b) Check for orientability of K0.

(c) Compute the Euler characteristic of K0.

(d) Let Y be the surface matching the orientability of K0 and of

Euler characteristic8 c(K0) + n(K0) by Table 4.1.

8 c(K0) + n(K0) is the Euler charac-
teristic of a surface obtained from
K by gluing n(K0) discs along the
boundary components of K0.

(e) Surface K0 is homeomorphic to Y with n(K0) many discs re-

moved.

With this classification algorithm we can always determine whether

two surfaces are homeomorphic or not.

4.5 Concluding remarks

Recap (highlights) of this chapter

• Surfaces, combinatorial surfaces;

• Orientation and orientability;

• Connected sum of surfaces;

• Classification of surfaces;
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Background and applications

For most of the practical purposes, we live in a three-dimensional

space. Objects in our everyday life are often modelled by surfaces

enclosing the objects. Outputs of many 3-D scans are given in terms of

triangulated surfaces (for example, as .stl files).

Surfaces and other higher-dimensional manifolds are also often

assumed to be the underlying spaces in specific settings. A randomly

generated bitmap image will seldom represent something reasonable,

and yet there is a huge number of images that convey an information

to the human eye. A space of “recognizable” images is a huge subspace

(perhaps a manifold) in the space of all bitmap images. Manifold

recognition approaches the attempt to detect the underlying manifolds

from sample data.

Figure 4.16: Spheres S0 (two points),
S1 (a circle), and S2 (a sphere).

Figure 4.17: Discs D1 (a line seg-
ment), D2, and D3.

The third source of surfaces and manifolds are spaces described

with two or more degrees of freedom: configuration spaces of molecules,

robotic arms, etc. For example, the configuration space of a robotic

arm (i.e., the space of all possible positions of the arm) with two in-

dependent joins, each of which allows a full rotational motion, is the

torus S1 ⇥ S1. On a similar note, given two annotated9 points on S1,
9 The annotation refers to the fact
that each point has a name in the
sense that if the two points lie at
di↵erent positions, then exchanging
them changes the configuration. The
situation is sometimes also described
using “ordered pairs” of points (x, y)
for which x, y 2 S1.

the configuration space of all possible positions of the two points is

again a torus S1 ⇥ S1, since the degree of freedom of each point is S1.

It is interesting to observe the di↵erence that appears if the points are

not annotated10: in such a case all possible configurations actually

10 In particular, if two non-annotated
points lie at di↵erent positions, then
exchanging them does not change the
configuration as the pair represents
the same collection of points on
S1. The situation is sometimes
also described using “unordered
pairs” of points (x, y) by additionally
identifying (x, y) ⇠ (x0, y0) if x = y0
and y = x0.

form the projective plane.

On a more theoretical note, the question of whether each manifold

admits a triangulation had been one of the focal points of topology in

the previous century. It turns out that every manifold in dimension

3 or less admits a triangulation. Surprisingly enough, there are man-

ifolds in higher dimensions that do not admit any triangulation. A

detailed proof of the classification theorem of surfaces can be found in

many textbooks11,12.

11 L. Christine Kinsey. Topology of
Surfaces. Springer New York, 1993.
doi: 10.1007/978-1-4612-0899-0
12 Jean Gallier and Dianna Xu. A
Guide to the Classification Theorem
for Compact Surfaces. Springer
Berlin Heidelberg, 2013. doi:
10.1007/978-3-642-34364-3

Appendix: imagining S3

In this appendix we will try to explain two ways of thinking about

the three-dimensional sphere S3 and spheres in general.

1. The first observation has to do with the relationship between discs

and spheres. We have already mentioned that Sn�1 appears as

the boundary of Dn. It should also be apparent (see Figure 4.18)

that gluing two copies of a disc Dn along their boundaries (copies

of Sn�1) results in Sn. In particular, we obtain S3 by taking two

3-discs (solid balls) and gluing them along the boundary.

2. As for the second observation we will refer to Figure 4.19. It turns

http://dx.doi.org/10.1007/978-1-4612-0899-0
http://dx.doi.org/10.1007/978-3-642-34364-3
http://dx.doi.org/10.1007/978-3-642-34364-3
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out that Sn can be obtained in the following way: pick two oppo-

site points (the north pole and the south pole) and span an inter-

val’s worth of copies of the sphere Sn�1 between them, so that the

spheres are shrinking as they are approaching the poles.

Note that if we only take one point and have the spheres shrinking

only as they approach that point (and have them increase oth-

erwise) we obtain Dn (see Figure 4.20 for some low-dimensional

examples).

Figure 4.18: Gluing two copies of a
disc together results in a sphere.

It may come as a surprise that these points of view can be observed

in Dante’s Divine Comedy, written about seven centuries ago. Dante’s

description of the universe coincides with the topology of S3: on one

extreme are the depths of Hell (part of Inferno), from which Dante

is guided by Beatrice through the spheres of Inferno, Purgatory, and

Paradise, until he reaches Empyrean, the place which contains the

essence of God.

Figure 4.19: Obtaining Sn as a
collection of spheres Sn�1 between
two points.

This description coincides with 2. above in terms of spheres. Equiv-

alently, we may consider Inferno and Purgatory together as one 3-disc

with center at Hell, and Paradise as another 3-disc with center at

Empyrean: in this setup the Universe consists of both 3-discs that

intersect along the surface of the Earth (which coincides with the

boundary S2).

Figure 4.20: Obtaining R2 (left) and
R3 (right) as a collection of concen-
tric spheres of all positive radii. In
the same way we can decompose Rk

for any k 2 {1, 2, . . .}.
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Constructions of simplicial complexes

Topological methods typically take a simplicial complex as

input. However, objects of interest are often not provided in this form.

The first step in a topological treatment is thus frequently a creation

of simplicial complexes. In this chapter we will present various con-

structions of complexes from a point cloud, i.e., from a finite collection

of points in a metric space. These points may represent a sample of

our shape, a collection of numerical data (a subset of Rn), etc.

Our discussion will include two properties we expect from such

a construction. The first one is a relationship with the underlying

shape, which is often guaranteed by the nerve theorem. The second

one describes stability to perturbations and a way to measure distance

between di↵erent constructions, as formalized by the interleaving

property.

5.1 Rips complexes

Rips complexes represent perhaps the simplest construction of a

complex from a finite collection of points.

Definition 5.1.1. Let X be a metric space and let a sample S ⇢ X
be a finite subset. Choose a scale r � 0. The Rips complex Rips(S, r)
is an abstract simplicial complex defined by the following rules:

1. The vertex set is S.

2. A subset s ✓ S is a simplex i↵ Diam(s)  r.

T Rips complexes are a special case
of clique complexes. Suppose G is
a graph with vertices V and edges
E. The clique complex of G is the
abstract simplicial complex with the
vertex set V, whose simplices satisfy
the following condition: a subset
s ✓ S is a simplex i↵ each pair of
vertices of s is an edge in G. A Rips
complex is the clique complex of its
1-skeleton.

T Diameter of a finite subset A ⇢ X
of a metric space X is defined as

Diam(A) = max
x,y2A

d(x, y).

Diameter of X is defined as

Diam(X) = sup
x,y2X

d(x, y).

Remark 5.1.2. A few comments:

• Rips complexes are sometimes also called Vietoris-Rips complexes.

• Rips(S, r) represents a combinatorial snapshot of S at scale r.
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Figure 5.1: Five points in the plane
and three corresponding Rips com-
plexes Rips(S, r). Visualisation is as-
sisted by circles of radius r/2 around
each point. For much larger scales
the Rips complex is not planar and
eventually becomes 4-dimensional.

• Diam(s) is the diameter of s. Condition Diam(s)  r means that

the distance between any two vertices of s is at most r.

• It is easy to verify that Rips complexes are indeed abstract simplicial

complexes: if s is a simplex then so is each of its subsets.

Figure 5.2: Suppose we are given
three points in the plane. These
three points span a triangle in the
Rips complex for r greater or equal
to the maximal pairwise distance
between these points. Equivalently,
the three balls of radius r/2 should
pairwise intersect.

Remark 5.1.3. Some properties of the Rips complexes:

1. Rips complexes are often the preferred construction in TDA due to

their simplicity in terms of the definition and computation.

2. Rips(S, r) is an abstract simplicial complex, typically not embed-

dable in X.

3. For r smaller than the smallest pairwise distance between the points

in S, Rips(S, r) is a discrete set, i.e., a complex with no edges or

higher-dimensional simplices.

4. For r at least as large as Diam(S), i.e., the largest pairwise dis-

tance between the points in S, Rips(S, r) is the (|S| � 1)-simplex,

i.e., the simplicial complex on S containing all subsets of S.

5. If r1  r2, then Rips(S, r1) ✓ Rips(S, r2).

Definition 5.1.4. Let X be a metric space and let a sample S ⇢ X
be a finite subset. The Rips filtration on S is the collection of ab-

stract simplicial complexes {Rips(S, r)}r�0 along with inclusions

ir1,r2 : Rips(S, r1) ,! Rips(S, r2) for all r1  r2.

T More generally, a filtration of a
simplicial complex K is a family of
subcomplexes {Kr}r�0 indexed by a
parameter r, such that Kr  Kr0 for
all r < r0. The Rips filtration on
a finite set S is a filtration of the
(|S|� 1)-simplex.

A Rips filtration provides the collection of all Rips complexes on S.

While a single Rips complex depends on the choice of the scale, the

filtration does not. Filtrations will play a fundamental role later in the

definition of persistent homology.
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5.2 Čech complexes

Definition 5.2.1. Let X be a metric space and let a sample S ⇢ X
be a finite subset. Choose a scale r � 0. The Čech complex Cech(S, r)
is an abstract simplicial complex defined by the following rules:

1. The vertex set is S.

2. A subset s ✓ S is a simplex i↵
T

x2s B(x, r) 6= ∆.

T Recall B(x, r) = {y 2 X | d(x, y) 
r} is a closed ball.

T Čech complexes are a special case
of nerve complexes, a connection
that will be explained below.

Figure 5.3: Five points in the plane
and three corresponding Čech com-
plexes Cech(S, r). Visualisation is
assisted by circles of radius r around
each point. For much larger scales
the Čech complex is not planar and
eventually becomes 4-dimensional.

Remark 5.2.2. A few comments about the definition:

• Čech complexes are a classical topological construction used in many

contexts throughout topology.

• Cech(S, r) represents a combinatorial snapshot of S at scale r.

• It is easy to verify that Čech complexes are indeed abstract simpli-

cial complexes.

Remark 5.2.3. Some properties of the Čech complexes:

1. While harder to compute1, Čech complexes are attractive due to a 1 See the MiniBall algorithm in the
Appendix.well understood geometric interpretation, which will be explained in

the next section within the context of nerve complexes.

2. Cech(S, r) is an abstract simplicial complex, typically not embed-

dable in X, although it is often homotopy equivalent2 to a subset of 2 See the nerve theorem below for
details.X.

3. For r smaller than one half of the smallest pairwise distance be-

tween the points in S, Cech(S, r) is a discrete set.

4. For r at least as large as twice the largest pairwise distance between

points in S, Cech(S, r) is the (|S|� 1)-simplex.

5. If r1  r2, then Cech(S, r1) ✓ Cech(S, r2).
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6. It is easy to verify3 that Cech(S, r) ✓ Rips(S, 2r). 3 If balls of radius r intersect then
the pairwise distances between the
centers are at most 2r.7. It is also easy to see that Rips(S, r) ✓ Cech(S, r). A non-trivial

inclusion Rips(S, r
p

2) ✓ Cech(S, r) holds in Euclidean spaces by

Jung’s theorem4. 4

Theorem 5.2.4 (Jung’s theo-
rem). If D is the diameter of a
finite subset F ⇢ Rn, then F is
contained in a ball of radius at

most D
q

n
2(n+1) .

For X = (Rn, d2) we actually obtain

Rips

 
S, r

r
2(n + 1)

n

!
✓ Cech(S, r).

The factor r
p

2 in 7 of Remark
5.2.3 is thus only the smallest upper
bound that holds for all n.

Definition 5.2.5. Let X be a metric space and let a sample S ⇢ X
be a finite subset. The Čech filtration of S is the collection of ab-

stract simplicial complexes {Cech(S, r)}r�0 along with inclusions

ir1,r2 : Cech(S, r1) ,! Cech(S, r2) for all r1  r2.

As was the case with Rips filtrations, Čech filtrations also provide a

scale-free approximation of the underlying set by simplicial complexes.

The smallest example demonstrating a di↵erence between the two

constructions is given in Figure 5.4.

Figure 5.4: Suppose we are given
three points in the plane. These
three points span a triangle in the
Čech complex i↵ the three balls of
radius r intersect. The left complex
consisting of three edges and no
triangle does not appear as a Rips
complex of any triple of points.

5.3 Nerve complexes

Čech complexes are a special case of a classical topological construc-

tion called the nerve.

Definition 5.3.1. For k 2 N let U = {U1, U2, . . . , Uk} be a collec-

tion of subsets of X. The nerve of U is the abstract simplicial com-

plex N (U ) defined by the following rules:

1. The vertex set is U = {U1, U2, . . . , Uk}, consisting of k elements.

2. A subset s ✓ U is a simplex i↵
T

i2s Ui 6= ∆.

A Čech complex is the nerve of the corresponding collection of r-
balls, i.e., Cech(S, r) = N ({B(s, r)}s2S). Another example is the

Delaunay triangulation, which is the nerve of the Voronoi diagram.
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U N (U) Figure 5.5: An example of a nerve.

Figure 5.6: Two examples of Čech
complexes: balls and the correspond-
ing complex superimposed (left),
complex only (center) and the union
of balls homotopy equivalent to the
complex by the nerve theorem(right).
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One of the main advantages of nerve complexes is that their ho-

motopy type in some cases represents the union of the elements of U .

This is formalized within the context of the nerve theorem, of which

we now state a special case.

Theorem 5.3.2. [Nerve theorem] Let n 2 N and assume a collec-

tion U = {U1, U2, . . . , Uk} consists of closed convex subsets of Rn.

Then U1 [U2 [ . . . [Uk ' N (U ).

T Nerve theorem actually holds
much more generally. For example,
assume each finite intersection of
sets of U (including each member
U 2 U , since it appears as the
intersection of {U} ✓ U) is either
empty or contractible. If U is a finite
collection of closed subsets in Rn, or
an arbitrary collection of open sets
in a metric space, then

[

U2U
U ' N (U ).

This is a stronger statement than
Theorem 5.3.2 by Lemma 5.3.3.

Lemma 5.3.3. Let n 2 N. Each
convex subset of Rn is contractible.

Proof. Assume A ⇢ Rn is convex
and fix x0 2 A. We can slide each a 2
A into x0 along the line segment from
a to x0. This results in a homotopy
H(a, t) = (1 � t)a + t x0 between
the identity map on A and the
constant map at x0, hence A is
contractible.

x0

Figure 5.7: A sketch of Lemma 5.3.3.

An idea of a proof is given in Appendix. The nerve theorem does

not hold for an arbitrary collection of subsets as Figure 5.5 demon-

strates.

For Delaunay triangulations the nerve theorem provides no addi-

tional information. As the Voronoi cells are convex, the nerve theorem

implies that the Delaunay triangulation is contractible, a fact we al-

ready know as it triangulates a convex (hence contractible by Lemma

5.3.3) planar region.

On the other hand, the nerve theorem provides a homotopical de-

scription of the Čech complex. As Euclidean balls are convex, we

obtain

Cech(S, r) = N ({B(s, r)}s2S) '
[

s2S
B(s, r),

i.e., the Čech complex Cech(S, r) has the homotopy type of the r-
neighborhood of S. This fact is the foremost reason for the use of Čech

complexes: while they are harder to compute than Rips complexes, we

know that the obtained homotopy type represents the r-neighborhood

of S. In this spirit we can interpret Figure 5.6. Furthermore, this

observation can be used to prove reconstruction results: given a closed

connected surface X in an Euclidean space, for each su�ciently small

scale parameter r � 0 and for each su�ciently dense finite subset

S ⇢ X we have X ' Cech(S, r), i.e., the homotopy type of a space X
can be reconstructed using Čech complexes (in Euclidean or geodesic

metric)5. In the Euclidean metric this holds as6 X ' N(X, r) for small 5 The same result holds for more
general spaces and under appropriate
conditions also for Rips complexes.
However, almost all of the proofs are
based on the application of the nerve
theorem to Čech complexes.
6 Imagine a circle in the plane, a knot
in R3 or a surface in R3: its small
thickening is homotopy equivalent to
the space itself.

r.

Alpha complexes

Alpha complexes are a fusion between planar Čech complexes and

Delaunay triangulations.



constructions of simplicial complexes 65

Definition 5.3.4. Let r � 0 and assume S ⇢ Rn is a finite collec-

tion of points satisfying a general position property: no n + 2 points

of S lie on the same (n � 1)-sphere. For each s 2 S let Vs denote

the corresponding Voronoi cell. The alpha complex of S at scale r
is the following nerve: N

⇣
{Vs \ B(s, r)}s2S

⌘
.

Assume S is as in Definition 5.3.4. While Cech(S, r) may be of arbi-

trarily high dimension7, the nerve theorem guarantees it is homotopy 7 This implies it may be computa-
tionally ine�cient.equivalent to a subset of Rn. The alpha complex of S at scale r is a

complex8, that is homotopy equivalent to Cech(S, r). To see this note 8 Note that it is a subcomplex of the
Delaunay triangulation on S. It is
planar if S is.

that by the nerve theorem9 both are homotopy equivalent to

9 Sets Vs \ B(s, r) are intersections of
closed convex sets thus closed and
convex themselves.

[

s2S
B(s, r) =

[

s2S

�
Vs \ B(s, r)

�
.

Thus alpha complexes may be seen as an e�cient way of obtaining T To see
S

s2S B(s, r) =
S

s2S
�
Vs \

B(s, r)
�
, take any x 2 S

s2S B(s, r) and
note that if s 2 S is a closest point to
x in S, then x 2 Vs \ B(x, r).

the homotopy type of a Čech complex in Rn.

Another way of thinking of alpha complexes is as a model for

molecules. Each atom in a molecule has a radius10 and touches (rather 10 Assume all the radii are the same.
For di↵erent radii there is a well
studied concept of a weighted alpha
complex.

than intersects) other atoms within the range.

Figure 5.8: Alpha complexes corre-
sponding to the situation in Figure
5.6. Note that the alpha complexes
are smaller (or equal) yet still homo-
topy equivalent to the corresponding
Čech complexes. For larger r the
Čech complexes become higher-
dimensional while the alpha com-
plexes of planar subsets maintain the
dimensionality bound 2.

A decomposition into regions
of the form Vs \ B(s, r) (on the
left) mimics the decomposition of
molecules into atoms.

Mapper

Another example of a construction based on the idea of the nerve is

Mapper. In contrast to the constructions above it is typically11 a one- 11 By the definition that will be
provided, a Mapper is a simplicial
complex of arbitrary dimension.
However, our discussion and exam-
ples will focus on one-dimensional
case, as do the practical applications
in which Mapper is used.

dimensional simplicial complex, i.e., a graph. Mapper can be thought

of as a one-dimensional sketch of a space X as detected through the

lens of a single map on X.

We first describe a theoretical setup. Assume:
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• X is a metric space;

• f : X ! [0, 1] is a (continuous) map12; 12 We restrict ourselves to the cases
when the target space is [0, 1]. How-
ever, there is no theoretical reason
for doing so and the construction is
well defined even if we replace [0, 1]
by some more complicated space.

• U is a collection13 of subsets of [0, 1], whose union is [0, 1].

13 Typically we restrict to cases
when no three subsets of U intersect.
In such cases Mapper is a one-
dimensional simplicial complex.

Definition 5.3.5. For each U let VU denote the collection of all com-

ponents of f�1(U) and define V =
S

U2U VU as the collection of all

subsets of X that appear as a component of a preimage f�1(U) for

some U 2 U . Mapper is defined as M(X, f ,U ) = N (V).

An example is provided by Figure 5.9.

f

U1

U3

U2

f�1(U1)

f�1(U2)

f�1(U3)

Mapper

X

Figure 5.9: The construction of
Mapper: a space (the torus on the
left), a continuous map (projection
f onto the vertical axis), cover
U = {U1, U2, U3} of the interval [0, 1],
a decomposition of the preimages
into the four components and the
resulting graph (right).

In practice data is often given as a finite set of points along with

certain measurements. For example, we may have a collection of pa-

tients along with their heart rate and blood pressure, or a collection

of basketball players along with their statistics, etc. In this case a

modified practical setup comes into play. Assume:

• X is a finite set;

• f : X ! I is a map (measurement);

• U is a chosen partition of [0, 1] into intervals, typically of fixed

length # > 0.

• P is a chosen clustering scheme14 on X. 14 This step possibly includes ad-
ditional choices of clustering algo-
rithms.
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Definition 5.3.6. For each U 2 U let VU denote the collection of all

clusters of f�1(U) with respect to P and define V =
S

U2U VU as

the collection of all subsets of X that appear as a cluster of a preim-

age f�1(U) for some U 2 U . Mapper is defined as M(X, f ,U ) =

N (V).

f

U1

U2

f�1(U1)

f�1(U2)

Mapper

Figure 5.10: The construction of a
Mapper when X is a point cloud.

While a point cloud and a number of measurements on it are often

given, one has to construct a single function f and a partition U ,

and choose other parameters very carefully to extract the desired

information. Mapper is usually not analyzed further with topological

tools but rather visualized, which is why the one-dimensionality is

preferable.

5.4 Interleaving properties

Given a finite subset of a metric space we have described how to

associate various complexes with that set. If we think for a moment

about finite abstract complexes we note that these objects are discrete:

it would be hard to define an obvious distance between abstract sim-

plicial complexes. On the other hand, we have a continuous selection

Example 5.4.1. Let X = {0, 1} ⇢
R. Note that Rips(X, r) changes
discontinuously at r = 1: while
Rips(X, 1) is a single edge (along
with the two boundary points), for
each r < 1 the complex Rips(X, 1)
consists of only two vertices.

of inputs and input parameters: scale r is typically positive and there

are reasonable notions of a distance between finite subsets of a metric

space. As a result any assignment of a single complex is bound to have

discontinuities15 (instabilities) of some sort, see Example 5.4.1 for a 15 Unless it assigns a constant com-
plex, of course.demonstration.

However, it turns out we can define a distance on filtrations, for
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which the assignment of a filtration16 becomes a continuous function 16 Of course, this eliminates the
dependency on the scale parameter r.of the input set and the scale parameter. 17
17 For the sake of simplicity we will
restrict ourselves to the mentioned
Rips and Čech filtrations although
the concept can be defined more
generally.

Definition 5.4.2. Choose # > 0. Filtrations {Ar}r�0 and {Br}r�0

(obtained by the Rips or the Čech construction) are #-interleaved if

there exist simplicial maps jr : Ar ! Br+# and yr : Br ! Ar+# such

that jr+# �yr : Br ! Br+2# and yr+# � jr : Ar ! Ar+2# are equal to

the corresponding inclusions.

Maps of Definition 5.4.2 can be visualised by drawing the following

commutative18 “ladder” diagram. 18 Adjective “commutative” refers to
the fact that all maps commute, i.e.,
going from one complex to another
through any viable sequence of maps
gives the same result.

· · · // Ar //

jr

!!

Ar+# //

##

Ar+2#
// · · ·

· · · // Br //

yr

==

Br+# //

;;

Br+2#
// · · ·

Definition 5.4.3. Given two filtrations their interleaving distance

is defined as the infimum of all values # > 0, for which the filtra-

tions are #-interleaved.

Example 5.4.4. Let X = {0, 1} ⇢ R

and Y = {0.1, 1.2} ⇢ R. Rips(X, r)
consists of:

• two points for r < 1;

• one edge for r � 1.

Rips(Y, r) consists of:

• two points for r < 1.1;

• one edge for r � 1.1.

The filtrations are 0.1-interleaved.

It turns out that in our context (Rips and Čech filtrations on finite

collections of points) the interleaving distance is a metric on the set of

filtrations. In contrast, recall that there seems to be no geometrically

meaningful metric on the set of single finite simplicial complexes.

The concept of interleaving will play an important role later in the

context of the stability of persistent homology. At this point we can

use it to phrase two proximity results.

Theorem 5.4.5 (Stability with respect to spaces). Choose # > 0 and

assume X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk} with d(xi, yi) 
#, 8i, i.e., X and Y each consist of k points, such that the correspond-

ing distances are at most #. Then:

• The Rips filtrations of X and Y are 2#-interleaved.

• The Čech filtrations of X and Y are #-interleaved.

Proof. It follows directly from the triangle inequality (see Figure 5.11)

that if a subset s ⇢ X is of diameter r, then the corresponding19 19 Subset t is formed by taking the
points of Y with the same indices as
appear in the points of s.

subset t ⇢ Y is of diameter at most r + 2#. Hence if s is a simplex

in Rips(X, r), then t is a simplex in Rips(Y, r + 2#). Consequently we

may deduce that:

• maps Rips(X, r)! Rips(Y, r + 2#) defined by xi 7! yi are simplicial;
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• maps Rips(Y, r)! Rips(X, r + 2#) defined by yi 7! xi are simplicial;

• as the above two maps obviously commute with the inclusions we

conclude that the Rips filtrations of X and Y are 2#-interleaved;

• in a similar fashion we may conclude that the Čech filtrations of X
and Y are #-interleaved.

x1 x2

y2y1

 r "  "

Figure 5.11: If d(x1, x2)  r and
d(xi , yi)  # then it is apparent that
d(y1, y2)  r + 2#.

These conclusions tell us that if we perturb our point set slightly,

the resulting filtration does not change much in terms of the inter-

leaving distance, i.e., the construction of a filtration is stable. In a

similar fashion we can express the relationship between Rips and Čech

filtrations.

Rips-Čech correlation

Recall that Cech(S, r) ✓ Rips(S, 2r) and Rips(S, r) ✓ Cech(S, r) ✓
Cech(S, 2r). This implies that the Rips and Čech filtrations, when

constructed with logarithmic scales20, are (log 2)-interleaved, i.e., 20 Note that Cech(S, er) ✓
Rips(S, 2er) = Rips(S, elog 2+r) and
similarly Rips(S, er) ✓ Cech(S, er) ✓
Cech(S, elog 2+r). These inclusions are
the interleaving maps.

{Rips(S, er)}r�0 and {Cech(S, er)}r�0

are (log 2)-interleaved.

5.5 Concluding remarks

Recap (highlights) of this chapter

• Complexes: Rips, Čech, nerve, alpha, Mapper;

• Nerve theorem;

• Interleaving;

Background and applications
T The curse of dimensionality: an
inconvenient fact that the number of
simplices typically grows fast with the
dimension of a simplicial complex.
This presents challenges for their
computational applications, which
are partially addressed by alternative
constructions of complexes.

Constructions of simplicial complexes greatly depend on the in-

tended use. Rips and Čech complexes along with the nerve construc-

tion are relatively well understood and have been originally introduced

for theoretical purposes in the first half of the twentieth century. Čech

complexes and particularly nerves were instrumental in development

of Čech homology and cohomology theories, which later led to shape

theory. Rips complexes have seen various independent introductions,

including in geometric group theory. Their use has recently been ex-

tended to the applied setting. They are the complexes most exposed

to the curse of dimensionality. Alpha complexes arose decades later
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within the realm of computational geometry and are intended for com-

putationally intense applications. For more details and references on

historical background on these complexes see a textbook21. There is 21 Herbert Edelsbrunner and John
Harer. Computational Topology: An
Introduction. Applied Mathematics.
American Mathematical Society,
2010. doi: 10.1090/mbk/069

also a modern perspective22 on nerve theorem, Dowker duality, and

22 Žiga Virk. Rips complexes as
nerves and a functorial Dowker-nerve
diagram. Mediterranean Journal of
Mathematics, 18(2):58, 2021. doi:
10.1007/s00009-021-01699-4

connections to Rips complexes. Mapper is a more recent construc-

tion23. It is often thought of as a low-dimensional projection method

23 Gurjeet Singh, Facundo Memoli,
and Gunnar Carlsson. Topological
Methods for the Analysis of High Di-
mensional Data Sets and 3D Object
Recognition. In M. Botsch, R. Pa-
jarola, B. Chen, and M. Zwicker,
editors, Eurographics Symposium
on Point-Based Graphics. The Eu-
rographics Association, 2007. doi:
10.2312/SPBG/SPBG07/091-100

and has turned out to be a commercial success.

At about the same time the interleaving distance emerged24 as a

24 Steve Y. Oudot. Persistence The-
ory: From Quiver Representations to
Data Analysis. Number 209 in Math-
ematical Surveys and Monographs.
American Mathematical Society,
2015. doi: 10.1090/surv/209

measure of stability of filtrations and persistent homology, although

equivalent concepts have been known in pure topology for a long time.

Appendix: the MiniBall algorithm

Given a finite subset s ⇢ X ⇢ Rn the MiniBall algorithm25 is

25 Emo Welzl. Smallest enclos-
ing disks (balls and ellipsoids). In
Hermann Maurer, editor, New Re-
sults and New Trends in Computer
Science, pages 359–370, Berlin,
Heidelberg, 1991. Springer Berlin
Heidelberg

a recursive algorithm that returns the miniball of s, i.e., the min-

imal26 ball in Rn containing s. As such, the algorithm provides a

26 Minimality is considered with
respect to the radius. Such a ball is
unique.

computational verification of the containment of s in a Čech com-

plex: s 2 Cech(X, r) i↵27 the radius of the miniball is at most r.

27 z 2 T
x2s B(x, r), s ⇢ B(z, r).

As the radius of the ball is also provided, the algorithm actually pro-

vides the exact lower bound for the scales r at which s is a simplex in

Cech(X, r), hence a single execution of the algorithm su�ces for the

entire filtration.

• Input: disjoint finite sets t, n ⇢ Rn.

• Output: the minimal ball with:

– t in the ball;

– n on the boundary of the ball.

" Given random finite t, n ⇢
Rn, there typically exists no ball
containing t and having n on the
boundary. The algorithm is designed
so that only the pairs (t, n), for
which this condition is satisfied are
called.

Algorithm 1: Miniball(t, n).

if t = ∆ then
compute miniball B directly;

else

choose u 2 t;

B =miniball(t � {u}, n);

if u /2 B then
B =miniball(t � {u}, n [ {u});

return B

The algorithm is initiated by calling Miniball(s, ∆) 28 and termi- 28 I.e., t = s, n = ∆

nates with the miniball B when t = ∆. It inductively scans through

the points of t. At each step it either removes a point (if removing it

from the set does not change the miniball of the set) or puts a point

http://dx.doi.org/10.1090/mbk/069
http://dx.doi.org/10.1007/s00009-021-01699-4
http://dx.doi.org/10.1007/s00009-021-01699-4
http://dx.doi.org/10.2312/SPBG/SPBG07/091-100
http://dx.doi.org/10.2312/SPBG/SPBG07/091-100
http://dx.doi.org/10.1090/surv/209
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into n (if removing the point decreases the miniball). When t = ∆ the

set n consists of at most n + 1 points that lie on the boundary of the

miniball of s and determine it. In this case we can use the standard

circumsphere and circumradius formulas in terms of determinants to

get the miniball.

Appendix: a sketch of a proof of the nerve theorem 5.3.2

A special case of the proof is illustrated by Figures 5.12, 5.13, and

5.14.

Proof. For the sake of simplicity29 let us assume the nerve is of di- 29 A complete general proof is much
more technical but broadly follows
the same steps as are presented here.

mension 1, i.e., all triple intersections of sets of U are empty. Define

X = U1 [U2 [ . . . [Uk and Z ⇢ X⇥N (U ) as:

Z =
[

s2N (U )

⇣ \

s2s

Us ⇥ s
⌘

.

We will prove that Z ' X and Z ' N (U ).

In order to prove Z ' X note that for each x 2 X the section

({x}⇥N (U )) \ Z is a simplex30 in the nerve spanned by all s 2 S, 30 In our case, either an edge or a
vertex.for which x 2 Us. Contracting each such simplex to a point in a

synchronized manner for each x 2 X we obtain a deformation of Z to

X, hence Z ' X.

In order to prove Z ' N (U ) note that for each y 2 N (U ) the

section (X ⇥ {y}) \ Z is a contractible set by assumptions. Contract

first the sections of this form for all non-vertices y, and then conclude

by contracting all the sections for vertices. We obtain a deformation of

Z to N (U ), hence Z ' N (U ).

U N (U) Z Figure 5.12: A collection U of subsets
of a circle X = S1 (left), the corre-
sponding nerve (center) and space
Z constructed in the proof (right).
The sets of U are illustrated as sub-
sets of the plane for greater clarity,
while formally U consists of their
intersections with X.
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Z S1 Figure 5.13: Proving Z ' S1 we
contract the sections above points of
x 2 X in Z corresponding to edges
in the nerve complex (contract along
the indicated arrows on the left) to
obtain S1.

Z N (U) Figure 5.14: Proving Z ' N (U )
we first contract the sections above
non-vertices y 2 N (U ) in Z (contract
along the indicated arrows on the
left) to obtain the space in the
center. Conclude by contracting the
sections above vertices y 2 N (U )
in Z (contract along the indicated
dashed arrows in the center) to
obtain N (U ) on the right.
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Appendix: Dowker duality

Nerve complexes are natural complexes arising from a collection

of subsets. There is another similar construction, called the Vietoris

complexes, that is in a way dual to the nerve construction.

Definition 5.5.1. For k 2 N let U = {U1, U2, . . . , Uk} be a collec-

tion of subsets of a finite space X, whose union is X. The Vietoris

complex of U is the abstract simplicial complex V(U ) defined by the

following rules:

1. The vertex set is X.

2. A set s ✓ X is a simplex i↵ there exists U 2 U containing s.

T Dowker duality actually holds for
an arbitrary collection of subsets U
of an arbitrary set X, no additional
structure is necessary. Even in such
generality it can be proved with ease
using a general form of the nerve
theorem.

We see that maximal simplices of V(U ) are determined by (inclusion-

wise) maximal sets of U . There is a surprising connection31 between

31 Cli↵ord H. Dowker. Homology
groups of relations. Annals of
Mathematics, 56(1):84–95, 1952. doi:
10.2307/1969768

the nerve complexes and Vietoris complexes.

Theorem 5.5.2 (Dowker duality). For k 2 N let U = {U1, U2, . . . , Uk}
be a collection of subsets of a finite space X, whose union is X. Then

N (U ) ' V(U ).

Proof. Consider V(U ) as a subspace of a Euclidean space. Each Ui
determines a simplex DUi spanned by all points of Ui. Note that

{DU1 , DU2 , . . . , DU2} are closed convex sets whose union is V(U ). By

the nerve theorem 5.3.2 V(U ) is homotopy equivalent to the nerve of

{DU1 , DU2 , . . . , DU2}. This nerve, on the other hand, is actually N (U )

via the correspondence DUi 7! Ui, see Figure 5.15 for a visual sketch of

the proof.

U V(U) N (U)
Figure 5.15: A cover of six points by
four colored sets (left), its Vietoris
complex (center) and nerve (right).
Colored simplices on the central
picture provide a collection of subsets
satisfying the conditions of the nerve
theorem. On the other hand, their
nerve is actually N (U ) on the right.
By the nerve theorem we conclude
the Dowker duality.

While Čech complexes are nerves associated to a collection of balls

of radius r, Rips complexes are Vietoris complexes associated to a

collection of sets of diameter at most r.

http://dx.doi.org/10.2307/1969768
http://dx.doi.org/10.2307/1969768




6

Fields and vector spaces

The material presented up to this point mostly falls into the

premise of geometric topology and combinatorics: we introduced met-

ric spaces and their combinatorial descriptions, simplicial complexes.

Our eventual goal however is to compute meaningful topological in-

variants from these combinatorial descriptions. Within mathematics

the field dealing with operations is called algebra and our milestone on

the path to computational implementation is an algebraic formulation

based on simplicial complexes. With that intention in mind we first

review and introduce some algebraic concepts.

In this lecture we will present fields and vector spaces. Specific

cases of the first two notions are probably familiar to the reader: real

numbers and vectors in Euclidean space. We will introduce a few

more fields and vector space constructions, which will provide us with

enough structure to introduce homology in the next chapter.

6.1 Fields

Within the context of algebra, a field is a set with two operations

satisfying a number of properties. For our purposes we will deflect a

formal introduction and rather introduce specific fields which will be of

our interest.

We will think of a field as our number system. We will want to

be able to add, subtract, multiply and divide (except by zero) in our

field. The fields a reader is most familiar1 with are probably Q, R, and 1 N is not a field as it does not
contain all results of subtractions,
for example, 3 � 5 /2 N. Z is is
not a field as it does not contain all
quotients by non-zero numbers, for
example 3/5 /2 Z.

C. However, there is also a family of finite fields (consisting of finitely

many numbers) which often provides convenient examples: fields of

remainders.
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The fields of remainders Zp

Definition 6.1.1. Let p 2 {2, 3, 5, . . .} be a prime number. Define:

(a) pZ = {p · n | n 2 Z} = {. . . ,�2p,�p, 0, p, 2p, 3p, . . .};

(b) Zp = Z/(pZ) as the quotient consisting of remainders when

dividing by p.

Let us discuss (b)2 in detail. The quotient Z/(pZ) consists of 2 I.e., the fields of remainders and the
quotient construction that defines it.classes, each of which can be represented by a number from the “nu-

merator” Z. If a 2 Z then the corresponding class is represented by

[a]. Two such numbers represent the same class in the quotient i↵

their di↵erence is3 in the “denominator” Zp. To phrase it di↵erently4, 3 I.e., i↵ their di↵erence is a multiple
of p. In particular this means [a] =
[b] if the remainder after dividing by
p is the same for both a and b.
4 What we just described is a general
construction of an algebraic quotient
structure. We will come across it
again in the context of vector spaces.

[a] = [b] , b� a 2 pZ.

Example 6.1.2. Let p = 5. In Z5 two numbers represent the same class

i↵ their di↵erence is divisible by 5. Classes [0], [1], [2], [3], [4] are all

distinct but5:
5 A few more examples in Z5:
[�4] = [1], [8] = [3], [17] = [2],
[1346134523451] = [1], [3457] = [2],
[�23513252] = [3].

• [5] = [0] as 5� 0 = 1 · 5.

• [6] = [1] as 6� 1 = 1 · 5.

• [�1] = [4] as �1� 4 = �1 · 5.

• [126] = [1] as 126� 1 = 25 · 5.

In particular, two positive numbers represent the same class i↵ their

remainder when dividing by 5 is the same.

T A few examples in Z7: [8] = [1] =
[15], [�5] = [2] = [72].

We draw another conclusion from Example 6.1.2: the most conve-

nient representation6 of Zp is given by p classes [0], [1], . . . , [p � 1]. 6 We will actually be using this
representation almost exclusively
from now on.

These classes are all distinct7 and together form Zp.
7 They form all possible remainders
after division by p.Example 6.1.3. The structure of Z2 encodes parity: for a 2 Z we

observe that [a] = 0 i↵ a is even, and [a] = 1 i↵ a is odd.

Defining addition, subtraction and multiplication in Zp These three

operations are defined in the obvious way:

[a] + [b] = [a + b], [a]� [b] = [a� b] and [a] · [b] = [a · b].

It turns out that the operations are well defined8 in the following 8 A proof that addition is well de-
fined:

[a] = [a0], [b] = [b0] =)

9ka, kb 2 Z : a0 = a + ka p, b0 = b + kb p.

Thus

[a0 + b0] = [a + ka p + b + kb p] =

= [(a + b) + (ka + kb)p] = [a + b].

sense:

[a] = [a0], [b] = [b0] =) [a + b] = [a0 + b0]

and the same holds for subtraction and multiplication.
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Example 6.1.4. Addition:

In Z5: [3] + [4] = [2], [3]� [4] = [4], [1] + [2] = [3].

In Z7: [3] + [4] = [0], [3]� [4] = [6], [1] + [2] = [3].

Multiplication:

In Z5: [3] · [4] = [2], [2] · [4] = [3], [2] · [3] = [1].

In Z7: [3] · [4] = [5], [2] · [4] = [1], [2] · [3] = [6].

Example 6.1.5. Note that in Z2 = {[0], [1]} we have [a] = [�a] hence
addition is the same as subtraction. In fact, if we identify [0] and [1]

with their Boolean values, addition and multiplication encode9 logical 9 Which means, amongst others, that
these operations in Z2 are fairly nat-
ural in computer implementations,
exact, and fast. In fact, computa-
tions in topological data analysis are
often performed using Z2.

operations “Exclusive or” (XOR) and “Conjunction” (AND):

[a] + [b] = [a XOR b], [a] · [b] = [a AND b].

Defining division in Zp

Up to this point the described structure of Zp did not require p to

be prime. This assumption, however, is required10 if we want to define 10 If q is not a prime then Zq con-
tains divisors of zero, i.e., non-zero
classes, whose product is the zero
class. For example, [2] 2 Z4 is a non-
zero class, but [2] · [2] = [4] = [0] 2 Z4
is the zero class. If we wanted to
find an inverse of [2] in Z4 we would
need to find an integer k 2 Z, so
that [2k] = [1] 2 Z4, an unattainable
feat as 2k is always even. A divisor of
zero has no inverse.

division . From number theory we know that if p is a prime, then for

each number a 2 Z with [a] 6= [0], the classes [a], [2a], . . . [pa] = [0]

represent the entire Zp. In particular, we can choose a coe�cient k
representing [1] = [kp] and define the inverse of p by [p]�1 = [k]. We

can consequently define the division by

[a]/[b] = [a] · [b]�1,

which turns out to be well defined if p is prime and [b] 6= [0].

Example 6.1.6. In Z5 we have [1 · 3] = [3], [2 · 3] = [1], [3 · 3] =

[4], [4 · 3] = [2], [5 · 3] = [0 · 3] = [0]. The products [k · 3] exhaust entire

Z5 and [3]�1 = [2]. Similarly, [2]�1 = [3].
In Z7 we have [2]�1 = [4], [3]�1 = [5], ...

1 2

3 0

Figure 6.1: Quotient Zp models
rotations by 2p/p. Adding p such
rotations we arrive at the original sit-
uation 0 2 Zp. The Figure represents
Z4. Given any situation the addition
of 1 is represented by a rotation by
p/2 in the positive direction.

We are now able to add, subtract, multiply and divide (except by

zero) in Zp, which makes Zp a field.

Remark 6.1.7. Counting and computing in Zp is surprisingly common

in everyday life. It appears whenever we have a periodic behaviour.

• Z2 is a model for true/false in logic, odd/even numbers, and binary

numbers.

• We use Z4 when thinking about seasons of the year.

• We use Z7 when thinking about days of the week (if today is the ath

day of the week then b days from today it will be [a + b]th day of the

week).

• We use Z10 whenever we are computing in decimal numbers. Given

a, b 2 N, the first digit of a + b equals [a + b] in Z10 and the same

goes for multiplication.
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• We use Z10 whenever we are converting units in the metric sys-

tem11. 11 As the reader might imagine,
there is no reasonable algebraic
explanation for the imperial system.• We use Z24 when thinking about hours in a day. When thinking

about hours coupled with the am/pm prefixes we actually do a com-

bination of Z2 and Z12.

• We use Z60 when thinking about minutes and seconds.

As a summary let us recall all the fields we mentioned: Q, R, C,
and Zp for any prime number p. These are the only fields we will be

considering.

6.2 Vector spaces

Let F be a field. A prototype of a vector space over field R a reader

is familiar with is Rn for any n 2 N. It consists of n-tuples (vectors)

of real numbers, which we can add, subtract, and multiply by any

element of our field R. In a similar way Fn is a vector field over F:

it consists of n-tuples (vectors) of numbers from F, which we can

add, subtract, and multiply by any element of our field F. While all

our vector spaces will essentially12 be of the form Fn, some of our 12 I.e., up to isomorphism, which will
defined later.constructions will require us to use a more formal definition.

Definition 6.2.1. Let F be a field. A vector space V over field F is

a set of elements (vectors) equipped with two operations,

1. addition + : V ⇥V ! V and

2. scalar multiplication · : F⇥V ! V

satisfying the following properties:

• addition is associative, commutative, contains the identity (zero)

vector 0, and V contains the opposite element of each vector;

• scalar multiplication is compatible, distributive, and normalized.

T Glossary of algebraic properties
mentioned in Definition 6.2.1:

• associativity: (u + v) + w =
u + (v + w), 8u, v, w 2 V

• commutativity: u + v = v +
u, 8u, v 2 V

• zero vector: 0 + v = v, 8v 2 V
[it should always be clear from
the context whether 0 denotes a
number in F or the zero vector in
V]

• the opposite element of v 2 V is
denoted by �v 2 V and satisfies
v� v = 0

• compatibility: (ab)v =
a(bv), 8a, b 2 F, 8v 2 V

• distributivity: (a + b)v = av + bv
and a(v + w) = av + aw, 8a, b 2
F, 8v, w 2 V

• normalization: 1 · v = v, 8v 2 V.

Roughly speaking, if we have a set of vectors we can reasonably

add, subtract, and multiply by elements of some field, then this set

forms a vector space.

Example 6.2.2. Let n 2 N. Given symbols v1, . . . , vn and a field F, all

formal13 sums Ân
i=1 aivi where ai 2 F form a vector space. Operations 13 A “formal sum” in this setting

means that vi + vj is not defined as
a single element vk (as a result of a
summation) in a vector space, but
is rather thought of as an abstract
element in itself. For example, if
we want to shop for an apple and
a pear, our shopping list should be
apple + pear, which does not equal
any other single fruit.

are defined in the obvious way:

n

Â
i=1

aivi +
n

Â
i=1

a0ivi =
n

Â
i=1

(ai + a0i)vi, and b
n

Â
i=1

aivi =
n

Â
i=1

(bai)vi.



fields and vector spaces 79

When F = Z2 the corresponding vector space models the power set

of v1, . . . , vn. A subset {vi+1, . . . , vik} corresponds do vi+1 + . . . + vik .

The sum of two formal sums in this setting models the symmetric

di↵erence14 between the corresponding sets. 14 The symmetric di↵erence of sets
A, B equals A [ B \ A \ B.

T Let X be a metric space and
m, n 2 N. The following are vector
spaces over F: the set of all m ⇥ n
matrices with entries in F, the set of
all functions X ! F, the set of all
continuous functions X ! F, the set
of all di↵erentiable functions X ! F

if F 2 {Q, R, C}, ... Operations
on functions in these examples are
defined pointwise.

For a prime number p and n 2 N the vector space (Zp)n = Zn
p is

a finite vector space consisting of pn elements. While this vector space

appears di↵erent from Rn, the formal theory, concepts, and proofs are

the same in both cases. We next recast the familiar notions from Rn

in the setting of vector spaces over F.

Let V, W be a vector space over field F.

1. A linear combination of vectors in V is any expression of the form

k

Â
i=1

aivi, ai 2 F, vi 2 V

2. A set of vectors {v1, v2, . . . , vk} ⇢ V is linearly independent15 if the 15 For example, vectors (1, 3) and
(2, 1) are linearly independent in
R2, Q2, Z2

13, but not in Z2
5.

only coe�cients ai 2 F satisfying Âk
i=1 aivi = 0 2 V are the zero

coe�cients, i.e., ai = 0, 8i.

3. A basis of V is a maximal16 linearly independent set in V. A a 16 In particular, each element of V
can be expressed uniquely as a linear
combination of the basis vectors.

vector space typically has many di↵erent bases. However, if V is

finite dimensional17, then the cardinality of each basis is the same. 17 I.e., if it admits a finite basis.

This number is called the dimension of V.

4. A subset U ✓ V is a vector subspace [notation: U  V] of V if it is

itself a vector space over F.

5. A map f : V ! W is linear if it is additive18 and multiplicative19. 18 f (v + w) = f (v) + f (w), 8v, w 2 V
19 f (av) = a f (v), 8a 2 F, v 2 VA linear map is completely determined20 by the images of its basis.
20 Consequently, a linear map can
be represented by a matrix M with
coe�cients in F if we chose bases
of V and W, with the matrix-vector
product M · v representing f (v).

6. A bijective linear map is called an isomorphism [notation: ⇠=].

Every vector space over F of dimension d 2 N is isomorphic to Fd.

7. Let f : V !W be a linear map.

(a) The kernel of f is defined as

ker( f ) = {v 2 V; f (v) = 0}  V

(b) The image of f is defined as

Im( f ) = { f (v); v 2 V} W.

The dimension of Im( f ) is called the rank of f .

(c) Given bases {v1, v2, . . . , vk} of V and {w1, w2, . . . , wl} of W,

map f may be represented by an l ⇥ k matrix with entries in F.

If f (vi) = Âj
j=1 ai,jwj, then the entry at (j, i) equals ai,j.
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8. Given a matrix with coe�cients in F, we can still preform Gauss

reduction to, for example, compute the rank of a linear map, solve

systems of linear equations, ... The procedure is the same as in Rn.

9. Given U  V, the quotient V/U is defined as the vector space over

F consisting of classes [v] for v 2 V under the following identifica-

tion21: 21 The operations of addition [u] +
[v] = [u + v] and multiplication by
a scalar a[u] = [au] for a 2 F, u, v 2
V are well defined by the same
argument that was provided in the
previous section for the fields.

[u] = [v], u� v 2 U.

In particular, [v] = [0] i↵ v 2 U.

TTake the following system in Z5:

(1) 2x + 3y = 2

(2) 3x� y = 1.

Multiply (1) by 2�1 = 3 to obtain

(3) x + 4y = 1.

To match with the leading coe�cient
of (2) multiply (3) by 3 to obtain

(4) 3x + 2y = 3.

Now subtract (4)� (2) to obtain

3y = 2

and thus y = 4 and x = 2.

Our forthcoming descriptions of holes in simplicial complexes will

be expressed in terms of dimensions and bases of vector spaces, for

which the following proposition will turn out to be very handy.

Proposition 6.2.3. Assume U, V, W are vector spaces over a field F.

1. Let f : V !W be a linear map. Then Im( f ) ⇠= V/ ker( f ).

2. Let U  V be a subspace. Then dim(V/U) = dim(U)�dim(V).

Proof. 1. Consider the map g : V/ ker( f ) ! Im( f ) defined by [u] 7!
f (u). The map is:

• well defined because [u] = [v] =) u� v 2 ker( f ) =) f (u� v) =

0 =) f (u) = f (v) =) g([u]) = g([v]);

• surjective by the definitions of Im f and g;

• injective as g([u]) = f (u) = 0 implies u 2 ker( f ) and thus

[u] = [0].

We conclude that g is an isomorphism.

2. Let {w1, . . . , wk} be a basis22 if U. Complete it by a set B1 = 22 This implies dim(U) = k.

{v1, . . . , vl} to a basis23 of V. Observe that B2 = {[v1], . . . , [vl ]} is a 23 This implies dim(V) = k + l.

basis24 of U/V: 24 This implies dim(V) = l and thus
proves our claim. Furthermore, it
demonstrates a way to obtain a basis
of U/V.

• B2 is linearly independent: if a linear combination of B2 was the

zero vector in V/U then the corresponding combination of the

elements of B1 was in U. This can only happen if the later com-

bination equals 0 by the choice of B1 and thus all the coe�cients

equal 0 by the linear independence of B1

• B2 spans the whole V/U because25 B1 and U span the whole V. 25 Take any v 2 V and express it as
v = v0 + v00, where v0 2 U and v00
is a linear combination of B1. Then
[v] = [v00].
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6.3 Concluding remarks

Recap (highlights) of this chapter

• fields, vector spaces

• quotients and dimension

Background and applications

Fields and abstract vector spaces have a long presence in mathe-

matics going back centuries. Finite fields are attractive for computa-

tional implementation due to their simplicity. Computations in them

are typically faster than in real numbers. Furthermore they are re-

sistant to some numerical issues present in reals and floating point

computations. On the other hand, there is a potential issue of over-

flowing with computer stored numbers, say integers. Algebraically it

stems from the fact that counting with integers in a computer is typ-

ically performed in Zp where log2 p is the number of bits assigned

to a variable. Some of related issues are described in a non-technical

book26, including an interesting rule in Swiss train regulations27. 26 Matt Parker. Humble pi: a comedy
of maths errors. Allen Lane, 2019
27 Apparently trains in Switzerland
are not allowed to have an e↵ective
total number of axles equal to 256.
Note that 256 = 28.

Algebraic predecessor of fields and vector spaces are (algebraic)

groups, another classical subject of algebra, which is now present in

virtually every corner of mathematics. For further algebraic back-

ground see a textbook28.
28 David S. Dummit and Richard M.
Foote. Abstract algebra. Wiley, 3rd
edition, 2004

Homology of the forthcoming section is typically introduced through

groups in the theoretical setting, while in practice fields are used al-

most exclusively. A short recap of groups is given in the appendix.

Persistent homology, on the other hand, is almost exclusively intro-

duced through coe�cients in a field and the resulting persistence

modules due to the accessible description in terms of a persistence

diagram.

Appendix: A very short introduction to Abelian groups
T The term ”Abelian” refers to
commutativity. If the commutativ-
ity condition is not satisfied, the
structure is called a (non-Abelian)
group. These include the groups of
permutations (with the operation be-
ing the composition) on n elements,
the groups of isometries of a metric
space (with the operation being the
composition), the group of invertible
matrices (with the operation being
the product), etc.

T We will typically shorten a + (�b)
to a� b.

Definition 6.3.1. An Abelian group (G, +) is a set G with an as-

sociative commutative operation + : G⇥ G ! G, such that:

1. there exists the zero element 0 2 G satisfying 0 + g = g + 0, 8g 2
G;

2. for each g 2 G there exists its converse �g 2 G satisfying

g + (�g) = 0.

Examples of Abelian groups include (R, +), (C, +), (Q, +), (Z, +),
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(Zq, +) for any q, (R \ {0}, ·), (C \ {0}, ·), (Q \ {0}, ·), (Zq \ {0}, ·) for

any prime p, etc.

Many definitions concerning groups are the same as those of fields

and vector spaces.

Definition 6.3.2. Suppose G, H are Abelian groups. A map f : G !
H is a homomorphism if f (a + b) = a(a) + b(b), 8a, b 2 A. A

bijective homomorphism is called an isomorphism [notation: ⇠=].

Suppose G, H are Abelian groups and map f : G ! H is a homo-

morphism.

1. A subset G0 ✓ G is a subgroup [notation: G0  G] of G0 if it is

itself a group for the same operation.

2. The kernel of f is defined as

ker( f ) = {a 2 G; f (a) = 0}  G.

3. The image of f is defined as

Im( f ) = { f (a); a 2 G}  H.

4. A set of elements a1, a2, . . . , ak 2 G is called a generating set29 of 29 Or just “generators”.

G, if each element of G can be expressed30 as a sum31 Âk
i=1 niai for 30 As opposed to vector spaces, such

expressions in groups are often not
unique, which is why the expression
“generating set” is used instead of
“basis”.
31 For n 2 N and a 2 G we define

n · a = a · a · . . . · a| {z }
n�times

and (�n) · a = �(n · a).

some ni 2 Z.

5. Group G is finitely generated if there exists a finite generating set.

6. If G0  G, the quotient G/G0 is defined as the group consisting of

classes [a] for a 2 G under the following identification:

[a] = [b], a� b 2 G0.

7. The direct sum of groups G and H is the group denoted by G� H
and defined as

G� H = {(a, b); a 2 G, b 2 H}

and the operation being defined coordinate-wise.

A remarkable fact about finitely generated Abelian groups is that

they can be classified in a wonderful way.
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Theorem 6.3.3. [Classification theorem for finitely generated Abelian

groups] Let G be a finitely generated Abelian group. Then there ex-

ist :

• k, r 2 {0, 1, . . .},

• q1, q2, . . . , qk 2 N, and

• prime numbers p1, p2, . . . , pk 2 N,

such that G is isomorphic to

Zr
|{z}

free part of G

�Zpq1
1
�Zpq2

2
� . . .�Zp

qk
k| {z }

torsion of G

.

Number r = rank(G) is called the rank of G.

Example 6.3.4. Z12 ⇠= Z3�Z4, while Z4 6⇠= Z2�Z2: for each element

a 2 Z2 �Z2 we have a + a = 0, while the same does not hold in Z4.

Proposition 6.3.5. Suppose G, H are Abelian groups, a map f : G !
H is a homomorphism, and G0  G. Then:

1. Im( f ) ⇠= G/ ker( f ).

2. rank(G/G0) = rank(G)� rank(G0).
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Homology: definition and computation

Now that we presented combinatorial and algebraic prerequi-

sites, we are ready to define homology. The notion of homology arose

from the need to detect the holes in a simplicial complex or a more

general space. Its definition is not as straight forward as one might

hope, but nonetheless results in a notion amenable to practical compu-

tations and consistent with the geometric intuition we presented in the

first chapter.

In this chapter we will journey through a geometric introduction

and definition of homology, and study the basic methods of compu-

tation. We will provide examples of homologies, which should build

up our understanding and detection of holes of all dimension not only

for subspaces of Euclidean spaces, but also within the combinatorial

context of abstract simplicial complexes.

7.1 Definition

Homology measures holes in a simplicial complex. As the latter is

provided by a collection of simplices, we need to devise a computa-

tional framework based on the simplices that will result in a mean-

ingful result. The formal treatment of this section will be provided in

parallel to a simple example on the right.

Let K be an abstract simplicial complex of dimension n and choose

a field of coe�cients F.

a
b

c
e

d

Figure 7.1: Abstract simplicial
complex L.
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d

a
b
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e

d

Figure 7.2: Two 1-chains in L: the
red chain on the left hc, ai+ ha, bi+
hc, di+ hd, bi+ hc, bi coincides with
the blue chain on the right hc, ai +
ha, bi + hc, di + hd, bi � 2hc, bi =
hc, ai+ ha, bi+ hc, di+ hd, bi+ 2hb, ci
i↵ the coe�cients are from Z3.

Chains

Chains are formal sums of simplices along with coe�cients from

F. They are an algebraic model of collections of simplices as demon-

strated in Figure 7.3.

For each p 2 {0, 1, . . . , n} let np denote the number of simplices of

dimension p in K.
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Definition 7.1.1. A p-chain is a formal sum Â
np
i=1 lis

p
i with li 2 F

and s
p
i being an oriented simplex of dimension p in K for each i.

This formalism incorporates orientation: if s is an oriented sim-

plex then (�1) · s = �s is the simplex s with the opposite orien-

tation.

We assume that {s
p
1 , s

p
2 , . . . , s

p
np} is the collection of all p-simplices

of K. The p-simplices that are ”absent” in a p-chain have coe�cient 0.

p-chains can be added/subtracted and multiplied by any scalar:

np

Â
i=1

lis
p
i +

np

Â
i=1

l0is
p
i =

np

Â
i=1

(li + l0i)s
p
i 8li, l0i 2 F.

k
np

Â
i=1

lis
p
i =

np

Â
i=1

(kli)s
p
i , 8k, li 2 F.
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Figure 7.3: Top row: addition of
chains in Z2. Bottom row: addition
of chains in any other field.

Example 7.1.2. Consider the simplicial complex L from Figure 7.1.

Two examples of 1-chains and their additions are presented in Figure

7.3.

• Working in Z2 (top of Figure 7.3) the 1-chains are merely subsets

of the collection of edges as the orientation does not matter (+1 =

�1 in Z2). Adding the red chain {a, c} + {b, c} and the blue chain

{b, c} + {b, d} results in the purple chain {a, c} + {b, d}.

• Computing in any other field (bottom of Figure 7.3) the orientation

does matter. Adding the red chain hb, ai+ ha, ci+ hc, di and the blue

chain hb, ai+ hd, ci results in the purple chain ha, ci+ 2hb, ai.

As a result the collection of all chains forms a vector space1. 1 For historical and practical reasons
we will match the established ter-
minology in the literature and call
this vector space a chain group, the
reason being that if the coe�cients
are in a group (as is standard in
classical theoretical approaches, see
also Appendix), the resulting chains
form only a group. In our case the
chains still form a group for addition,
but the overall structure along with
multiplication by a scalar is that of a
vector space.

Definition 7.1.3. The chain group Cp(K; F) is the vector space of

all p-chains.

Thinking of p-simplices of K as an abstract collection of linearly

independent vectors, the resulting linear space (with coe�cients in F)

spanned by them is the chain group. If np is the number of p-simplices

of K then Cp(K; F) ⇠= Fnp .

Boundary

With the definition of chain groups in place, we can now express

the boundary relation as a linear map. The boundary map encodes the

assembly instruction for a simplicial complex.
x y

z

x y

z

Figure 7.4: Oriented triangle hx, y, zi
and its boundary ∂2(hx, y, zi) =
hx, yi+ hy, zi+ hz, xi.
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Definition 7.1.4. Let p 2 N. The boundary map

∂p : Cp(K; F)! Cp�1(K; F)

is the linear map defined by the following rule on the basis of Cp(G; F):

for each oriented p-simplex s = hv0, v1, . . . , vpi the image ∂ps is the

sum of facets of s equipped with the induced orientation from s, i.e.,:

∂ps =
p

Â
i=0

(�1)ihv0, v1, . . . , vi�1, vi+1, . . . , vpi.

For technical reasons we additionally define ∂0 : C0(K; F)! 0 to be

the trivial map (actually, the only map) into the trivial vector space

(the space only containing the 0 vector).

T The 0 vector is also called the
trivial vector. The trivial map be-
tween vector spaces is the map whose
image is the 0 vector.

" We will typically be dropping
the index of the boundary map ∂
whenever it will be evident either
that the statement relating to the use
of ∂ refers to all indices p or to a
specific p. For example, when talking
about ∂sp, it is apparent that the
map in question is ∂p. On the other
hand, notation ∂2 = 0 means that for
each p 2 N, ∂p � ∂p�1 is the trivial
map whose image is the zero vector.

A crucial fact for the algebraic formulation of a homology is that

the composition of two boundary maps is the trivial map. In partic-

ular, this implies that the image of a boundary map is contained in

the kernel of the subsequent boundary map. See the note on the right

concerning the notation in the following statement.

Theorem 7.1.5. ∂2 = 0.

Proof. It su�ces to prove that ∂2s = 0 for an oriented p-simplex

s = hv0, v1, . . . , vpi. Note that ∂2s is a formal sum of faces of s of

dimension p� 2. Choose indices i < j from {0, 1, . . . , p} and consider

how does the face2 2 The following face is obtained from
s by dropping vertices vi and vj.

s0 = hv0, v1, . . . , vi�1, vi+1, . . . , vj�1, vj+1, . . . , vpi

appear in ∂2s. Such a face appears from two terms:

x y

z
�

+

+�

+

�

Figure 7.5: An example of The-
orem 7.1.5: Oriented triangle
hx, y, zi on the left, its boundary
∂(hx, y, zi) = hx, yi + hy, zi + hz, xi,
and ∂2(hx, y, zi) = hxi � hxi+ hyi �
hyi+ hzi � hzi = 0 as indicated by the
signs at the vertices on the right.

• By first removing vertex vj from s in the expression of ∂p and then

removing vertex vi from the resulting simplez in the expression of

∂p�1. The indices of removed vertices are j and i hence the sign in

from t of s0 is (�1)i(�1)j.

• By first removing vertex vi from s in the expression of ∂p and then

removing vertex vj from the resulting simplez in the expression of

∂p�1. The indices of removed vertices are i and3 (j� 1) hence the
3 As vertex vi has already been
removed and i < j, the vertex vj in
now on position j� 1.

sign in from t of s0 is (�1)i(�1)j�1.

As the signs are opposite, the total sum equals zero.

Corollary 7.1.6. Im(∂) ⇢ ker(∂).
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Definition 7.1.7. The collection of chain groups bound together by the

boundary maps is called the chain complex:

· · · ∂! Cn(K; F)
∂! Cn�1(K; F)

∂! · · · ∂! C1(K; F)
∂! C0(K; F)

∂! 0

For computational purposes the boundary maps are typically rep-

resented as matrices with entries in F. For each p 2 N a matrix Mp

corresponding to ∂p is obtained as follows:

• Columns are enumerated by oriented p-simplices of K.

• Rows are enumerated by oriented (p� 1)-simplices of K.

• Entry at position (i, j) equals +1 or �1 if the i-th row appears with

orientation +1 or �1 correspondingly in the boundary of the j-th
column. All other entries are zero.

a
b

c
e

d

Figure 7.6: Abstract simplicial
complex L.

Example 7.1.8. In particular, the boundary ∂a of a chain a is obtained

by multiplying the boundary matrix with the natural representation of a

in the chosen4 basis.

4 The same basis that is used to
enumerate rows.

Labeled boundary matrices5 for complex L of Figure 7.6:

5 Only non-zero entries are provided.
Matrix M0 has no formal rows as
it represents the zero-map into the
one-element vector space 0.

M2 =

0

BBBBB@

ha, b, ci
ha, bi 1
hb, ci 1
ha, ci �1
hb, di 0
hc, di 0

1

CCCCCA
, M1 =

0

BBBBB@

ha, bi hb, ci ha, ci hb, di hc, di
hai �1 �1
hbi 1 �1 �1
hci 1 1 �1
hdi 1 1
hei

1

CCCCCA

Homology

We are now finally ready to define homology as a measure of holes.

Let us first build an intuition on the simplicial complex L from Figure

7.6. This will be followed up by a formal introduction in Definition

7.1.9.

Our task is to compute that L has one hole. In the figure the hole

seems to be enclosed by edges cd, db and bc. Following this observation

we decide that holes will be represented by a special kind of chains

called cycles, see Figure 7.7. These are the chains that model closed

simplicial loops in our simplicial complex, just as the one describing

the hole in L above. Formally, we define cycles to be those chains,

whose boundary is zero. These are our candidates for the representa-

tives of holes.

a
b

c
e

d

a
b

c
e

d

a
b

c
e

d
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e

d

Figure 7.7: Top row: Two cycles.
Bottom row: a chain that is not a
cycle (left) and the cycle, that is the
sum of the cycles of the top row.

However, not all cycles represent loops. For example, the top right

cycle in Figure 7.7 is the boundary of a triangle and thus does not

enclose any hole. Such cycles thus do not represent a hole and should
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be treated as trivial. Similarly, if a cycle is obtained as the boundary

of a 2-chain, then it should be treated as trivial. Such cycles are called

boundaries6 and the structure formalizing the triviality of boundaries 6 At this point, the term “boundary”
can refer to a geometric boundary
of a simplex, a boundary map,
or a chain, that is the image of a
boundary map.

is the quotient space.

Summing up the idea, the holes are represented by the quotient

group cycles/boundaries.

Recall that for each p 2 {0, 1, . . .} we have Im ∂p+1  ker ∂p.

a
b

c

d
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d
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c

d
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d

Figure 7.8: Top left: a simplicial
complex with two holes. Its first
homology group H1 with coe�cients
in Z2 has three non-trivial elements,
depicted as the blue, the red, and the
purple chain. However, that does not
mean that the number of holes equals
3. Along with the trivial homology
class, the homology groups consists
of 4 elements. This means that its
dimension over Z2 equals 2, which is
the number of holes. We also observe
that any two of the three non-trivial
chains above could form the basis of
H1. In fact, each of the three non-
trivial chains is the sum of the other
two.

Definition 7.1.9. Let K be an abstract simplicial complex. Choose a

field F and q 2 {0, 1, . . .}. We define

• the group of q-cycles as Zq(K; F) = ker ∂q  Cq(K; F).

• the group of q-boundaries as Bq(K; F) = Im ∂q+1  Zq(K; F) 
Cq(K; F).

• q-homology group as the quotient Hq(K; F) = Zq(K; F)/Bq(K; F).

The dimension of Hq(K; F) is called the q-Betti number (of K with

coe�cients in F) and is denoted by bq = bq(K; F).

In particular, each element of a homology group is an equivalence

class7 of cycles. The homology group of example L from Figure 7.6

7 Given a cycle b, the corresponding
class in homology will be denoted by
[b].

will depend on F. Defining a = hb, ci + hc, di + hd, bi as the top

left cycle in Figure 7.7, we see that H1(L; F) is {k[a] | k 2 F}. Even

though we have only one hole, the homology group typically has more

elements. However, the entire H1(L; F) is spanned by [a] and thus

the number of holes should be interpreted8 as the dimension of the

8 At this point we observe that it
is crucial to preserve the algebraic
structure (of a vector space) of the
homology group in order to compute
the dimension as the number of
holes.

homology group, in this case 1.

More generally, each homology group with coe�cients in a field

F is a vector space and thus isomorphic to Fr for some dimension r.
The main goal of our computations is thus to compute r = bq, which

represents the number of q-dimensional holes:

• b0 is the same for all fields F and equals the number of components

of K (0-dimensional holes).

• b1 is the number of holes in the usual geometric sense (1-dimensional

holes), although various fields detect di↵erent9 holes in this setting.
9 See the example of the Klein bottle
later in this section.

For planar graphs however, b1 is always the number of the holes.

• b2 is the number of caves/enclosures.

These interpretations will be explored, demonstrated and partially

proved throughout the rest of this chapter. Before we do that let us

mention that homology groups are homotopy invariants even though

cycles and boundaries are not.
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Theorem 7.1.10. Assume K and K0 are simplicial complexes. Then

a homotopy equivalence K ' K0 implies Hp(K; F) ⇠= Hp(K0; F), for

each field F and for each p 2 {0, 1, . . .}.

Zero-dimensional homology

In this subsection we prove that b0 is the number of components10 10 While there are alternative ways
to obtain the number of components
employing a smaller amount of
algebra, there are no alternatives to
homological constructions when it
comes to 1- and higher-dimensional
holes.

of the underlying simplicial complex. Let K be a simplicial complex

and F any field. The homology group H0(K; F) is computed from the

following piece of information:

C1(K; F)
∂1! C0(K; F)

∂0! 0.

In order to compute H0(K; F) we need to determine ker ∂0 and Im ∂1.

Since ∂0 is trivial we have11 ker ∂0 = C0(K; F). In order to determine 11 Dimension 0 is the only case where
a single simplex forms a cycle.Im ∂1 we prove the following proposition.

Proposition 7.1.11. Let K be a simplicial complex, F any field and

assume x, y 2 K(0) are vertices. Then hyi � hxi 2 Im ∂1 i↵ x and

y lie in the same component of K.

Proof. Assume x and y lie in the same component of K. Then there

exists12 a path from x to y tracing edges. Let x = x0, x1, . . . , xk = y 12 ...by the simplicial approximation
theorem.denote the sequence of vertices traced by one such path. Then the

chain hyi � hxi is the boundary of the 1-chain Âk�1
i=0 hxi, xi+1i. See

Figure 7.9 for an example.
a

b
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Figure 7.9: The boundary of the de-
picted chain is hdi � hbi, which is also
the boundary of hb, di. As a conse-
quence, the column corresponding to
hb, di in the matrix of ∂1 is the sum
of the columns corresponding to the
edges of the chain.

In order to prove the other direction assume hyi � hxi = ∂a for

some 1-chain a. Let K0  K be the component of K containing vertex

x and define a0 to be the part of a contained in K0. i.e., s0 contains

all those terms of a whose edge is in K0. No vertex of K0(0) \ {x, y}
appears in ∂a0 as none appears in ∂a either and the terms containing

edges with such a vertex as an endpoint are the same in both a and a0.

Hence ∂a0 is either hyi � hxi in case y 2 K0 or �hxi otherwise. Since

the coe�cients in front of vertices of any boundary add13 up to zero,

13 As ∂(khz, wi) = khwi � khzi this
property holds for boundaries of
single terms. By linearity of ∂ the
same also holds for chains.

only the first of these two options is possible.

Assume K1, K2, . . . , Kn are the components of K with xi 2 Ki, 8i.
We now combine the following information that allows us to describe

H0(K; F):

1. Equality ker ∂0 = C0(K; F) means ker ∂0 = Z0(K; F) has a basis

{hvi}v2K(0) .

2. For each edge hx, yi 2 K we have ∂hx, yi = hyi � hxi, meaning that

hxi and hyi get identified in the homology group, i.e., [hxi] = [hyi].
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3. By Proposition 7.1.11 the equivalence classes of two vertices are

identified in homology i↵ the vertices lie in the same components.

4. By 1. {[hvi]}v2K(0) span H0(K; F) and by 2. and 3. so do {[hxii]}n
i=1.

5. The collection {[hxii]}n
i=1 is linearly independent, the proof of this

claim being similar to the second part of the proof of Proposition

7.1.11.

As a result {[hxii]}n
i=1 is a basis of H0(X; F) and thus the dimension of

H0(X; F) equals the number of components of K, i.e., b0 = n. For ex-

ample see Figure 7.10.

a
b

c
e

d

Figure 7.10: Abstract simplicial
complex L. H0(L; F) is of dimension
two (representing two components)
with a basis [< a >] = [< b >
] = [< c >] = [< d >] and [<
e >]. H1(L; F) is of dimension one
representing one hole, with a basis
[hc, di+ hd, bi+ hb, ci].

Homology of a graph

Let K be a simplicial complex which is a connected planar graph,

and let F be any field. In this subsection we prove that b1 is the

number of holes K generates in the plane.

The homology group H1(K; F) is computed from the following piece

of information:

C2(K; F)
∂2! C1(K; F)

∂1! C0(K; F).

As C2(K; F) = 0 we have H1(K; F) = ker ∂1 so it su�ces to determine

the kernel of ∂1.

1. Let K0  K be a maximal tree with edges e1, e2, . . . , en.

2. The collection ∂e1, ∂e2, . . . , ∂en is linearly independent by the fol-

lowing argument14. As K0 ' 0 its first homology is trivial by 14 For an alternative geometric
argument see Figure 7.11.Theorem 7.1.10 and as K0 contains no triangles, H1(K0; F) =

ker ∂1|C1(K0 ;F). In particular, ∂1|C1(K0 ;F) is injective. Its matrix con-

tains ∂e1, ∂e2, . . . , ∂en as columns and injectivity implies the columns

are linearly independent.

3. Let W denote the span of ∂e1, ∂e2, . . . , ∂en.
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Figure 7.11: In this figure we demon-
strate a geometric reason why the
collection of the boundaries of all
edges of a tree is linearly indepen-
dent. Given a tree (on the left side
of the figure) assume a linear combi-
nation of the boundaries of its edges
is the zero vector. Since vertex a
only appears in edge ha, di, the co-
e�cient in front of that edge in the
mentioned linear combination equals
0. The same argument holds for b
and c and thus the mentioned linear
combination only contains edges from
the subtree on the right. Repeating
the argument above, now for vertices
d and e, we conclude that the men-
tioned linear combination is trivial
and thus the claim holds. The same
argument works for any tree.

4. Let en+1, en+2, . . . , em be the edges of K that are not contained in

K0, with each ej being the edge from vertex xj to vertex yj.

5. Adding edges en+1, en+1, . . . , em to K0 inductively, each addition of

an edge increases the number of holes generated by the resulting

graph by one.

6. In a parallel fashion, each addition of an edge increases the dimen-

sion of the kernel of the first boundary map by 1 as ∂ej 2 W, 8j 2
{n + 1, n + 1, . . . , m} by Proposition 7.1.11.

7. In the end of this process of adding edges we have generated m� n
holes and the dimension of ker ∂1 (and b1) turns out to be m� n.
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8. For each j 2 {n + 1, n + 1, . . . , m} let cj denote the (simplicial) path

in K0 from xj to yj represented as a 1-chain. The following form a

basis of H1(K; F): [ej � cj] for j 2 {n + 1, n + 1, . . . , m}.

An example is displayed in Figure 7.12.
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c
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Figure 7.12: From left to right, the
pictures represent a planar graph, a
maximal tree, edges not contained
in the chosen maximal tree and two
cycles representing a basis of the
first homology. Note that the graph
induces two holes and thus b1 = 2.

7.2 Computing homology

A systematic way to compute homology groups is through matrix

reduction which allows us to obtain the rank15 of a linear map. Before 15 Given a linear map of vector
spaces, its rank is the dimension of
its image.

we provide the details on the rank computation, let us explain how to

use it in order to compute the Betti numbers.

Let K be an abstract simplicial complex of dimension n and choose

a field of coe�cients F. For each p 2 {0, 1, . . . , n} let np denote the

number of simplices of dimension p in K.
Proposition 7.2.1. Let f : A ! B
be a linear map of vector
spaces. Then:

1. dim A = dim(ker f ) + rank f

2. dim(B/ Im f ) = dim B �
rank f

Part 1. of Proposition 7.2.1 is a
standard statement of linear algebra.
Part 2. was proved in the previous
chapter.

Proposition 7.2.2. 1. dim ker ∂p = np � rank ∂p

2. bp = np � rank ∂p � rank ∂p+1

Proof. Part 1. follows from 1. of Proposition 7.2.1 as np = dim Cp(K; F).

Part 2. follows from 2. of Proposition 7.2.1 and 1.

Thus the Betti numbers can be expressed only using the number

of simplices of a given dimension and the ranks of the corresponding

boundary maps. Now let us turn our attention to rank computations.

Given a boundary matrix, its rank16 is easily obtained17 from the row 16 And thus also the rank of the
boundary map. Equivalent defini-
tions of the rank of a matrix include:
the maximal number of linearly in-
dependent columns; the maximal
number of linearly independent rows.
17 When using coe�cients in R or Q

the numerical procedure to obtain
rank might in some cases result in
certain instabilities. When using
coe�cients in Zp however such
issues do not arise, at least not for
reasonably small p.

or column echelon form.

Echelon forms

In order to obtain a row echelon form of a matrix we can use the

following operations18:

18 Operations are considered in F.

R1: exchange two rows;

R2: multiply a row by a non-zero element of F;
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R3: add a multiple of one row to a di↵erent row.

C1: exchange two columns.

In the end we are aiming for the following transformation19 19 Symbols ⇤ denote arbitrary ele-
ments of F. The first r elements of
the diagonal are declared to be 1 in
our case. This is one version of the
row echelon form and can always be
achieved. However, there is a variant
of row echelon form in which these
diagonal entries are non-zero but not
necessarily 1, with the other ⇤ entries
still being arbitrary (possibly zero)
elements of F. Using this variant
the rank is still obtained in the same
way and as a benefit, the number of
row operations required to reach it is
typically smaller.

0

BBBBBB@

a1,1 a1,n

am,1 am,n

1

CCCCCCA
 

0

BBBBBBBB@

1 ⇤ ⇤
0

1 ⇤ ⇤
0 0

0 0

1

CCCCCCCCA

r

The number of the non-trivial diagonal entries, r, equals the rank of

the matrix. In practice we will sometimes refrain from using C1 and

only reduce to the classical row echelon form that is typically obtained

through Gaussian elimination.

In a similar way we can also compute the column echelon form

using the corresponding column operations C1, C2, C3 and (possibly)

R1.

a
b

c
e

d

Figure 7.13: Simplicial complex L.

Example 7.2.3. Let us compute the homology of simplicial complex L
from Figure 7.13. The boundary matrices are

M2 =

0

BBBBB@

ha, b, ci
ha, bi 1
hb, ci 1
ha, ci �1
hb, di 0
hc, di 0

1

CCCCCA
, M1 =

0

BBBBB@

ha, bi hb, ci ha, ci hb, di hc, di
hai �1 �1
hbi 1 �1 �1
hci 1 1 �1
hdi 1 1
hei

1

CCCCCA
.

Performing only row operations we obtain20 20 The reduced form in this case
coincides for all fields F. Later we
will see, for example with the Klein
bottle, that the reduced forms and
ranks in general depend on F.

0

BBBBB@

1
0
0
0
0

1

CCCCCA
and

0

BBBBB@

1 1
1 1 1

1 1

1

CCCCCA

These are the classical row echelon forms typically obtained through

Gaussian reduction21 and the rank of such a matrix is the number of 21 In order to obtain pivots only on
the diagonal, as the row echelon form
as we defined it requires, we would
need to exchange columns 3 and 4.

pivots22. The corresponding ranks of the matrices are 1 and 3. We

22 Equivalently, the number of non-
zero rows.

thus have rank ∂2 = 1, rank ∂1 = 3, n2 = 1, n1 = 5, n0 = 5 and we

conclude:

• b2 = n2 � rank ∂2 = 0, the complex encloses no “void”.

• b1 = n1 � rank ∂1 � rank ∂2 = 1, which is the number of holes.

• b0 = n0 � rank ∂1 = 2, which is the number of components.

T Row and column operations
amount to changes in the bases of
the domain and target vector spaces.
These changes can be encoded in
transformation matrices and in fact,
most special forms or reductions of
matrices are often expressed in terms
of matrix factorizations. For our
illustrative purposes though we will
stick with the annotations.
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Smith normal form and representatives

While the computation of the echelon forms su�ces to compute the

Betti numbers, we are often interested in the representing cycles23 of 23 There are also other ways to
compute the representing cycles al-
though, at the end of the day, most
of them use a similar amount of lin-
ear algebra. A high-level approach
would be the following. First com-
pute the basis of Im ∂p+1, which is
the column space of the correspond-
ing boundary matrix. Then complete
it to the basis of ker ∂p. The vectors
forming the completion represent the
basis of p-homology. As mentioned,
there are many ways to practically
formalize these steps, including the
presented one through the Smith
normal form.

homology groups as well. To that end we employ a di↵erent canonical

form of a matrix: the Smith normal form. It is obtained from the row

echelon form by eliminating the ⇤ entries to zero using the row and

column operations R1, R2, R3, C1, C2, C3.

0

BBBBBB@

a1,1 a1,n

am,1 am,n

1

CCCCCCA
 

0

BBBBBBBB@

1 0 0
0

1 0 0
0 0

0 0

1

CCCCCCCCA

r

In order to obtain representing cycles though, we need to use anno-

tated rows and columns:

• The annotations of columns from index r + 1 on form the basis of

the kernel.

• The boundaries of annotations of columns of index up to r on form

the basis of the image.

0

BBBBBBBB@

1 0 0
0

1 0 0
0 0

0 0

1

CCCCCCCCA

ker

a
b

c
e

d

Figure 7.14: Abstract simplicial
complex L.

Example 7.2.4. Let us compute the representatives of the homology

groups of simplicial complex L from Figure 7.14. The annotated bound-

ary matrices are

M2 =

0

BBBBB@

ha, b, ci
ha, bi 1
hb, ci 1
ha, ci �1
hb, di 0
hc, di 0

1

CCCCCA
, M1 =

0

BBBBB@

ha, bi hb, ci ha, ci hb, di hc, di
hai �1 �1
hbi 1 �1 �1
hci 1 1 �1
hdi 1 1
hei

1

CCCCCA

with the annotated row echelon forms being24 24 Only the column annotations will
be displayed as the row annotations
are not required.
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0

BBBBB@

ha, b, ci
1
0
0
0
0

1

CCCCCA
and

0

BBBBB@

ha, bi hb, ci hb, di ha, ci hc, di
1 1

1 1 1
1 1

1

CCCCCA
.

The first of these two matrices is already in the Smith normal form.

The Smith normal form of the second matrix is:

0

BBBBB@

ha,bi hb,ci hb,di�hb,ci ha,ci�hb,ci�ha,bi hc,di�hb,di+hb,ci

1
1

1

1

CCCCCA
.

a
b

c
e

d

Figure 7.15: Obtained representatives
of bases of the homology groups of
L. Representatives hai and hei in red
spanning H0(L; F), and representative
hc, di � hb, di+ hb, ci in blue spanning
H0(L; F).

We now construct the homology representatives by dimension:

Dimension 0:

1. ker ∂0 has a basis hai, hbi, hci, hdi, hei.

2. Im ∂1 has a basis formed by the images of the first three anno-

tated columns of the Smith normal form, i.e., ha, bi, hb, ci, and
hb, di � hb, ci. The basis obtained in this way is

hbi � hai, hci � hbi, and hdi � hbi+ hci � hbi.

3. We may complete the basis from 2. to the basis of ker ∂0 by, for

example, adding hai and hei and thus hai and hei represent the
two 0-holes25 spanning H0(L; F). 25 I.e., components.

Dimension 1:

1. ker ∂1 has a basis ha, ci � hb, ci � ha, bi and hc, di � hb, di+ hb, ci.

2. Im ∂1 has a basis formed by the images (boundaries) of the first

annotated column of the Smith normal form, i.e., ha, b, ci. The

basis obtained in this way is

ha, bi+ hb, ci � ha, ci.

3. We may complete26 the basis from 2. to the basis of ker ∂0 by, 26 The fact that the basis element
from 2. is a member from the basis
of 1. helps us to see this completion
immediately. However, such a situa-
tion is an exception and a completion
of basis typically involves some work
with linear algebra.

for example, adding hc, di � hb, di + hb, ci and thus hc, di �
hb, di+ hb, ci represents a 1-holes spanning H1(L; F).
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Incremental expansion and elementary collapse

We conclude the section by analysing how a minimal change to a

simplicial complex, an addition of one or two simplices, a↵ects the

homology.

We first discuss the incremental expansion, or how an addition27 of 27 Or a removal, which can be analy-
ized in a similar fashion.a simplex to a simplicial complex changes the homology. Let K be a

simplicial complex and let s(n) /2 K be an n-simplex on vertices of K
such that K [ {s} is28 also a simplicial complex. The addition of s to 28 In particular, all faces of s should

be present in K.K has the following e↵ect to the homology computation scheme:

1. The number of n-simplices increases29 by 1. 29 This means that either the dimen-
sion of the kernel of ∂n or the rank of
∂n increases by 1.2. If chain ∂s is already contained in ker ∂n, then the addition of

s to the boundary matrix of ∂n adds a column, which is linearly

dependent on other columns and in e↵ect, the dimension of the

kernel is increased by 1.

3. If chain ∂s is not in ker ∂n, then the addition of s to the boundary

matrix of ∂n adds a column, which is linearly independent on other

columns and in e↵ect, the rank of the matrix is increased by 1.

Figure 7.16: A demonstration of
incremental expansion. Adding an
edge to a simplicial complex may
either reduce b0 (the number of
components) by 1 (blue case) or
increase b1 (the number of holes) by
1 (red case).

As a result (see Figure 7.16), an incremental expansion either in-

creases bn by 1 (case 2.), or decreases bn�1 by 1 (case 3.).

We next discuss an elementary collapse. We have already men-

tioned it in the chapter on simplicial complexes. Let K be a simplicial

complex, t(k�1) ⇢ s(k) 2 K, and assume s is the only coface of t.

A removal K ! K \ {t, s} is called an elementary collapse. It is a

modification that does not change the homotopy type, and hence the

homology is preserved.

Figure 7.17: An elementary collapse.

Let us see how an elementary collapse e↵ects the computation of

homology.

• The boundary of s is not a linear combination of boundaries of

other k-simplices as s is the only30 coface of t. Hence removing s 30 Meaning that ∂s is the only
boundary of a k-simplex contain-
ing a term with t.

decreases rank ∂k by 1.

• The boundary of t is a linear combination of boundaries of other

(k � 1)-simplices by the following argument. Simplex t is con-

tained31 in the chain ∂s. Since the boundary of this chain equals 31 ...with coe�cient +1 or �1.

zero32, we can express ∂t as a sum of boundaries of other facets of 32 ∂2s = 0

s with the appropriate coe�cients ±1. Hence t is a linear combina-

tion of boundaries of other (k � 1)-simplices and thus removing it

decreases ker ∂k�1 by 1.

In total, the dimensions of the homology groups do not33 change. 33 Recall that the only homology
group that may potentially change is
Hk�1. It is defined as ker ∂k�1/ Im ∂k
and since the dimension of both
ker ∂k�1 and Im ∂k decreases by one,
the dimension of the quotient is
preserved.
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7.3 Examples of homology

In this section we present some further aspects of homology that

should aid our understanding of the concept.

Disjoint unions

Two abstract simplicial complexes are said to be disjoint if their

collections are disjoint34. Two geometric simplicial complexes are 34 I.e., if there is no intersection be-
tween the sets of vertices. Formally
speaking, if such an intersection
existed it would mean that we are
treating both collection of vertices as
subsets of some larger set.

said to be disjoint if their bodies are disjoint. The union of disjoint

simplicial complexes K, L is called a disjoint union and is denoted by

K ‰ L.

Given two disjoint simplicial complexes K, L, the homology of their

disjoint union is the cartesian product35 of the individual homologies: 35 In our setting, the term “direct
sum” could also be used.Hi(K ‰ L; G) ⇠= Hi(K; G)⇥ Hi(K; G). Computationally we can see this

by observing that the boundary map ∂ has block-diagonal matrices:

boundaries of chains from K lie in K and the same holds for L. Since

each simplicial complex is the disjoint union of its components, the

technical computations and treatments of homology are typically

restricted to connected simplicial complexes.

Example 7.3.1. Given a planar graph K and any field F:

• b0 is the number of components of K.

• b1 is the number of holes of K induces in the plane.

This is consistent with our obervation for disjoint union in case K is

not connected (as in Figure 7.18).

Figure 7.18: A planar graph with
four components: b0 = 4, b1 = 7, c =
�3.

Euler characteristic

Suppose K is a simplicial complex and let ni denote the number

of i-simplices in K. Recall that the Euler characteristic c(K) 2 Z is

defined as c(K) = n0 � n1 + n2 � n3 + . . . .
This invariant has an interesting interpretation in terms of homol-

ogy.

Proposition 7.3.2. c(K) = b0 � b1 + b2 � b3 + . . ..

Proof. By 2. of Proposition 7.2.2 we have bp = np � rank ∂p �
rank ∂p+1. Substituting these equality into b0 � b1 + b2 � b3 + . . .
we obtain c.

Example 7.3.3. Given a planar graph K and any field F, c(K) equals

the number of components subtracted by the number of holes K gener-

ates in the plane.

Figure 7.19: S0 demonstrates non-
trivial H0, S1 represents a one-
dimensional hole, and S2 encloses a
two-dimensional hole.
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Spheres

Holes as measured by homology are represented by cycles and the

fundamental examples of holes are provided36 by spheres. In this sub- 36 The homology of a metric space
is, for our purposes, the homology of
any triangulation of that space.

section we prove that given a triangulation of an n-sphere for n � 1,

the consistently oriented collection of n-simplices represents an n-hole.

In fact, this is the only hole a sphere has. A convenient triangulation

of Sn we will be using will be the one37 consisting of all faces of an 37 To be precise: take an (n + 1)-
simplex, add all of its faces to obtain
a simplicial complex called the full
simplex on n + 2 points (sometimes
also called the full (n + 1)-simplex),
and then remove the (n + 1)-simplex
to obtain a trianagulation of Sn.

(n + 1)-simplex.

Proposition 7.3.4. For each F and n 2 {1, 2, . . .} we have:

• H0(Sn; F) ⇠= Hn(Sn; F) ⇠= F;

• Hi(Sn; F) = 0, 8i /2 {0, n}.

Proof. The full simplicial complex on n + 2 points is contractible

hence all its homology groups are trivial except for H0, which is of

rank 1. Removing the only (n + 1)-simplex reduces rank ∂n+1 by

one and hence increases bn by 1, as was explained in the context of

incremental expansions and removals.

T An observation: The full simplex
on n points is contractible hence its
Euler characteristic equals 1. On
the other hand, computing its Euler
characteristic by definition we get
n points �(n

2) edges + (n
3) triangles

. . . (�1)n · 1 n-simplex. Summing it
up we get:
✓

n
1

◆
�
✓

n
2

◆
+

✓
n
3

◆
� . . . (�1)n

✓
n
n

◆
= 1,

by the binomial formula.

Since S0 is a collection of two points it is easy to see38. that the 38 ..by a direct computation or by the
argument of Proposition 7.3.4only non-trivial homology group of S0 is H0(S0; F) ⇠= F2.

Surfaces

A beautiful demonstration of the two-dimensional homology is

provided by surfaces.

Proposition 7.3.5. Let K be a triangulation of a closed (i.e., without

boundary) connected orientable surface. For each group F we have

H2(K; F) ⇠= F.
Figure 7.20: Examples of closed
connected surfaces: they all enclose
one 2-dimensional hole in the form of
a “cave”, which is manifested in the
fact that b2 = 1.
" The statement of Proposition
7.3.5 does not hold for connected
surfaces with boundary. If there
was a non-trivial 2-cycle in such
a case, the same argument as in
the proof of the proposition would
imply that the cycle would be the
oriented sum of all triangles (possibly
multiplied by a single non-trivial
factor l 2 F). Since a presence of
a boundary of a manifold implies
the existence of an edge, which is a
face of precisely one triangle, such a
triangle (multiplied by l) would thus
appear in the boundary of the cycle,
a contradiction.
The second homology of a con-

nected manifold with a boundary is
thus always trivial.

Proof. Recall that K being orientable means there exists a consistent

choice of orientations on all triangles of K. Let us fix such an orienta-

tion on them.

1. The structure of a surface implies that each edge of K is a face of at

most two triangles.

2. The structure of a closed surface implies that each edge of K is a

face of precisely two triangles.

3. Consistency of orientations on triangles implies that whenever two

triangles intersect in an edge, the induced orientations on the edge

are the opposite.
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Let us define chain a as the sum of all oriented triangles. By 1.-3.

above each edge appears in ∂a twice, once with each orientation (see

Figure 7.21), and thus ∂a = 0, meaning that a is a chain. As the

image of ∂3 is trivial, a represents a non-trivial homology class.

On the other hand, whenever a 2-cycle b contains a term39 +s, 39 If s appear in the term ls for
some non-zero l 2 F, we repeat the
same argument for the chain divided
by l.

where s is an oriented triangle, observations 2. and 3. imply that all

oriented simplices sharing an edge with s also appear in a with coe�-

cient 1. Inductively expanding this conclusion to further neighbors we

reach all triangles as K is connected and thus deduce that b = a. The

proposition is thus proved.

Homology class [a] generating H2(K; F) as defined40 in the proof 40 Formally speaking, there are two
fundamental classes, one for each
orientation of triangles...except when
F = Z2. If F = Z2 there is only one
non-trivial homology class which is
its own converse.

is called the fundamental class of the surface. In the same way we

can prove that if K is a closed connected orientable manifold of di-

mension n, then Hn(K; F) ⇠= F with the generator, which is again

called the fundamental class, being the sum of all consistently oriented

n-simplices of K.

The case of non-orientable surfaces is the first presented situation in

which the choice of coe�cients matters.

Figure 7.21: Top: The boundary
of a chain consisting of all consis-
tently oriented triangles of a surface
without boundary is zero, as the
induced orientations on edges cancel
out. Bottom: The boundary of a
chain consisting of a not-consistently
oriented collection of all triangles
of a surface without boundary
contains each edge between two
non-consistently oriented triangles
twice.

Proposition 7.3.6. Let K be a triangulation of a closed connected non-

orientable surface. Then H2(K; Z2) ⇠= Z2 and H2(K; F) ⇠= 0 for

each F 6⇠= Z2.

Proof. As in the proof of Proposition 7.3.5, the fact that K is a sur-

face means that if a 2-cycle a contains a term +s for some oriented

triangle s, it also contains a term +s0 for each oriented triangle s0

sharing41 an edge with s. Again, as K is connected, this means that

41 Sharing in the sense of consistent
orientation, meaning that the in-
duced orientation on the shared edge
are the opposite.

a is the sum of all oriented triangles. However, as K is non-orientable,

there is no consistent orientation on triangles and thus42 some edges

42 As each edge appears twice in the
boundary of such a chain and not all
such appearances may cancel each
other out by the non-orientability.

appear with coe�cient 2 in the boundary, see Figure 7.21. Thus if43

43 Equivalently, if F 6= Z2.

0 6= 2 the boundary is non-trivial and the assumed 2-cycle does not

have an empty boundary, a contradiction. Hence the only 2-cycle is

the trivial cycle.

T Proposition 7.3.6 also generalizes
to the n-dimensional homology of
closed connected non-orientable
n-manifolds.

However, if F = Z2, the obtained boundary equals zero and thus a

is the only non-trivial cycle. As a result, H2(K; Z2) ⇠= Z2.

We may summarize these two propositions and the corresponding

comments as follows:

• A connected surface K is closed i↵ H2(K; Z2) 6= 0.

• Given any field F 6= Z2, a closed connected surface is orientable if

H2(K; F) ⇠= F.
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Impact of coe�cients: the Klein bottle

An example where the choice of coe�cients makes a di↵erence in

1-dimensional homology computations is the Klein bottle, which will

be denoted by K in this subsection. It is depicted in Figure 7.22.

Its triangulation is given by the black portion in Figure 7.24. We

already know that b0 = 1 as K is connected. However, the second

Betti number of this closed surface depends on the coe�cients due to

the non-orientability:

• b2(K; Z2) = 1.

• For F 6⇠= Z2, b2(K; F) = 0.

Figure 7.22: The Klein bottle.

From this information and the expression of the Euler characteristic

as the alternative sum of Betti numbers we conclude:

• b1(K; Z2) = 2, i.e., H2(K; Z2) ⇠= Z2
2.

• For F 6⇠= Z2, b1(K; F) = 1.

These Betti numbers can also be computed through the matrix re-

duction. Instead of computing them, we will rather demonstrate the

geometric reason for the di↵erence in b1 depending on the coe�cients.

The explanation will be based on Figure 7.24. On each of the five

parts of the figure a triangulation of K is provided by the black/grey

portion. The black arrows indicate the direction in which the identifi-

cations are performed. A single red horizontal directed line represents

a cycle a generating the extra dimension of H2(K; Z2). It is also de-

picted in Figure 7.22. It turns out that [a] is homologically non-zero i↵

coe�cients are Z2. In order to prove this statement we first present a

claim.

We claim that 2[a] = 0 in 1-dimensional homology. In order to

prove the claim the leftmost part of Figure 7.24 has two copies of a

drawn slightly apart from each other. The corresponding homology

class does not change if we move44 each of the copies of a separately. 44“Moving” in this setting can be
thought of as a homotopic change.
Formally speaking, a moved chain
represents the same homology class
if the di↵erence between the original
and the new chain is in the boundary
group, see Figure 7.23.

So let’s move them as on the Figure:

Figure 7.23: Excerpt from the trans-
formation in Figure 7.24. The blue
and the red chain represent the same
homology class because their di↵er-
ence (blue � red) is the boundary of
the 2-chain consisting of the strip of
depicted oriented triangles.

• move the upper copy slightly higher;

• move the lower copy to the bottom of the side. Due to the reversed

orientation, the chain then appears on the top of the square with

(in the plane seemingly) reversed orientation. Moving this repre-

sentative lower to the first copy of a we see, that the copies cancel

each other out: they consist of the same edges with converse orien-

tations.

As a result, the claim holds, i.e, 2[a] is the trivial homology class.

Depending on the coe�cients of our computation this has the follow-

ing ramifications:
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Figure 7.24: The Klein bottle.

• if F 6⇠= Z2 then we can divide equation 2[a] = 0 by 2 and obtain

that [a] = 0 2 H1(K; F).

• if F ⇠= Z2 then we can’t divide equation 2[a] = 0 by 2 as 2 = 0. It

turns out that [a] 6= 0 2 H1(K; Z2) and thus a provides an extra

dimension to H1(K; Z2).

For an alternative argument proving the claim see Figure 7.25.

Figure 7.25: Another proof of the
fact that 2[a] is homologically trivial
within the Klein bottle. The chain
2[a] is depicted in red and is the
boundary of the 2-chain consisting of
all depicted oriented triangles.

Alexander duality

Homology is defined for any abstract simplicial complex. However,

if there is an underlying geometric simplicial complex K embedded in

a sphere or a Euclidean space, there is a connection between the ho-

mology of K and that of its complement. The relationship is formally

known as Alexander duality.

Before we state the duality we should explain a few technical details

of the complement construction. Let K ⇢ R2 be a geometric simplicial

complex. In particular, K consists45 of finitely many simplices. The 45 Formally, the body of K is the
union of finitely many simplices.complement of K, denoted by KC = R2 \ K, is unfortunately not home-

omorphic to a (finite46) simplicial complex. As a proof of this claim 46 Recall that all simplicial complexes
considered here are finite. Within
the context of infinite simplicial com-
plexes though, the complement can
be triangulated and the treatment
of complements presented here is
immaterial.

observe that K is a closed47 subset of the plane, while KC is usually48

47 In particular, this means that the
limit of each converging sequence in
K lies in K.
48 Except if K is empty.

not. However, KC is homotopic to a finite simplicial complex. For ex-

ample see Figure 7.26. At this point we defer from specifying details of

triangulation of KC or its homotopy type and rather conclude with the

declaration: KC is homotopy equivalent to a finite simplicial complex

K0 and so whenever we will be talking about the homology of KC, we

will formally be thinking of the homology of K0. The same discussion

applies if K is a geometric simplicial complex in any Euclidean space

or a sphere.

Alexander duality provides a connection between the homologies of

K and its complement.
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Theorem 7.3.7 (Alexander duality). Let n 2 N and suppose K ⇢
Sn is a geometric simplicial complex. Then for any coe�cients F we

have:

1. b0(K; F)� 1 = bn�1(KC; F).

2. bn�1(K; F) = b0(KC; F)� 1.

3. bq(K; F) = bn�q�1(KC; F) for all q 2 {1, 2, . . . , n� 1}.
Figure 7.26: Simplicial complex K in
the plane in black, and a simplicial
complex K0 homotopy equivalent
to its complement in red. Note the
number of holes of K is one less than
the number of components of K0, i.e.,
b1(K) = b0(K0) � 1. Also, number
of holes of K0 equals the number of
components of K, i.e., b1(K0) = b0(K).

For a proof see a textbook49. From the Alexander duality we may

49 James Munkres. Elements of
Algebraic Topology. Perseus Books,
1984. doi: 10.1201/9780429493911

draw a similar conclusion for complexes in Euclidean spaces by tak-

ing into account that removing a point50 from Sn results in a space

50 A removal of a point from KC ⇢ Sn

increases bn�1 by one.

homeomorphic to Rn.

Corollary 7.3.8. Let n 2 N and suppose K ⇢ Rn is a geometric

simplicial complex. Then for any coe�cients F we have:

1. b0(K; F) = bn�1(KC; F).

2. bn�1(K; F) = b0(KC; F)� 1.

3. bq(K; F) = bn�q�1(KC; F) for all q 2 {1, 2, . . . , n� 1}.

Alexander duality is handy when computing homology groups of

simplicial complexes in Euclidean spaces or spheres. For example,

instead of computing the one-dimensional homology of a planar sim-

plicial complex, we can51 compute the number of components of its 51 Provided there is an easy descrip-
tion of a complement. Such examples
would include bitmap images.

complement, which is typically much faster.

Figure 7.27: A demonstration of
Alexander duality: given a bounded
subset X of the plane, each compo-
nent of X corresponds to a hole in
XC, and each hole in X corresponds
to bounded component of XC.

7.4 Concluding remarks

Recap (highlights) of this chapter

• Cycles, boundaries, homology

• Detecting components and holes with homology

• Computing homology through matrix reduction

• Euler characteristic

• Alexander duality

Background and applications

Homology is one of the focal invariants in topology and geometry.

Homological conditions and constructions can be found throughout

mathematics. We will present one of them in the appendix (Cubical

http://dx.doi.org/10.1201/9780429493911
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homology). The version presented here is usually called “simplicial

homology” as it arises from the structure of a simplicial complex. For

non-triangulated spaces a version called “singular homology” can be

defined. In general though, any reasonable boundary map ∂ satisfying

∂2 induces its own homology structure. Examples52 include cubical 52 Another example is the De Rham
cohomology and exterior derivative.
While the theory itself is quite in-
volved, a snapshot of the fact that
∂2 = 0 can be observed in low dimen-
sions via specific derivatives: gradi-
ent, divergence, and curl, are specific
boundary maps as the composition
of a consecutive pair amongst them
equals zero.

homology (see appendix) and cohomology. For a general reference we

mention a few textbooks53.

53 James Munkres. Elements of
Algebraic Topology. Perseus Books,
1984. doi: 10.1201/9780429493911;
Allen Hatcher. Algebraic topology.
Cambridge Univ. Press, Cambridge,
2000; and Raoul Bott and Loring W.
Tu. Di↵erential Forms in Algebraic
Topology. Springer New York, New
York, NY, 1982. doi: 10.1007/978-1-
4757-3951-0

Amenability to algorithmic computations through matrix reductions

and, as we will see later, Discrete Morse Theory makes homology an

obvious tool with which we could determine topological properties

of data. In practice, though, the usual homology is often superseded

by persistent homology, which is a richer, parameterized version of

homology described in later chapters.

Appendix: Homology with coe�cients in Abelian groups

Classical introductions of homology typically consider coe�cients

from an Abelian group rather than a field. By far the most popular

choice among non-fields is the group of integers Z. In this subsection

we review the construction and properties of homology using coe�-

cients54 in a group Z. 54 The presented treatment would be
practically identical for any Abelian
group as the coe�cient group.

Let K be an abstract simplicial complex of dimension n. For each

q 2 {0, 1, . . . , n} let nq denote the number of simplices of dimension q
in K.

The definition of homology in this case remains the same with

the only di↵erence being that the structure of the resulting algebraic

invariants is that of Abelian groups, and the boundary operator ∂ is a

homomorphism:

1. A q-chain is a formal sum Â
nq
i=1 ais

q
i where ai 2 Z and s

q
i is an

oriented simplex of dimension q in K.

2. The chain group Cq(K; Z) ⇠= Znq is the group of all q-chains. Its

generators are oriented q-simplices of K.

3. For each p 2 N the boundary map

∂p : Cp(K; Z)! Cp�1(K; Z)

is the homomorphism defined by

∂phv0, v1, . . . , vpi =
p

Â
i=0

(�1)ihv0, v1, . . . , vi�1, vi+1, . . . , vpi.

As before, ∂2 = 0. Additionally define ∂0 = 0.

4. The collection of chain groups bound together by the boundary

homomorphisms is called the chain complex:

· · · ∂! Cn(K; Z)
∂! Cn�1(K; Z)

∂! · · · ∂! C1(K; Z)
∂! C0(K; Z)

∂! 0

http://dx.doi.org/10.1201/9780429493911
http://dx.doi.org/10.1007/978-1-4757-3951-0
http://dx.doi.org/10.1007/978-1-4757-3951-0
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5. For each q 2 {0, 1, . . .}. We define groups:

• q-cycles as Zq(K; Z) = ker ∂q  Cq(K; Z).

• q-boundaries as Bq(K; Z) = Im ∂q+1  Zq(K; Z)  Cq(K; Z).

• q-homology group as the quotient group

Hq(K; Z) = Zq(K; Z)/Bq(K; Z).
Proposition 7.4.1. Suppose G, H
are Abelian groups, a map
f : G ! H is a homomorphism,
and G0  G. Then:

1. ker( f )  G.

2. Im( f )  H.

3. Im( f ) ⇠= G/ ker( f ).

4. rank(G/G0) = rank(G) �
rank(G0).

Up to this point the introduction has been analogous to the one

where coe�cients form a field. However, as Hq(K; Z) is an Abelian

group, its rank does not completely determine it. In particular,

Hq(K; Z) ⇠= Zr
|{z}

free part of G

�Zpq1
1
�Zpq2

2
� . . .�Zp

qk
k| {z }

torsion of G

,

where the rank of the group r = bq(K; Z), referred to as the q-Betti

number, only determines55 the free part of the group. 55 Two cases when the homology
group has no torsion:

• For any simplicial complex K we
have H0(K; Z) ⇠= Zb0 , where b0 is
the number of components of K.

• If K is a planar graph then
H1(K; Z) ⇠= Zb1 , where b1 is
the number of holes K generates
in the plane.

Let rank ∂q be the rank of the image of ∂q. By Proposition 7.4.1,

numbers bq can be deduced56 from the ranks of ∂q, ∂q+1 and nq. How-

56 I.e., bp = np � rank ∂p � rank ∂p+1.

ever, in order to compute torsion we need to delve deeper into the

structure of the boundary maps.

For example, suppose the ranks of the two maps in the following

diagram are 1:

Z
j! Z

y! Z,

and assume Im j ✓ ker y. Defining H = ker y/ Im j, we know that

rank H = 0. However, depending on maps j, y group H could be

any group of the form Zm. For example, if y(n) = k · s · n for some

k, s 2 N and j(n) = k · n, then H ⇠= Zs. T It turns out that amongst all pos-
sible choices of coe�cients, homology
with coe�cients in Z contains the
most information. Details of this
statement are formalized in the uni-
versal coe�cient theorem, which
explains the connection between coef-
ficients Z and all other coe�cients.

In order to compute homology with coe�cients in Z we may reduce

each boundary matrix to its Smith normal form. Given a matrix with

entries in Z, its Smith normal form is:

D =

0

BBBBBBBBBB@

a1 0 0
0 a2

ar 0 0
0 0

0 0

1

CCCCCCCCCCA

,

where each diagonal entry ai divides57 the next one. The diagonal 57 I.e., ai |ai+1, 8i 2 {1, 2, . . . , r� 1}.
entries ai are called elementary divisors and r is the rank58 of the 58 The rank of the matrix corre-

sponding to a boundary map coin-
cides with the rank of the boundary
map.

matrix.
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Each matrix with entries in Z has59 a Smith normal form. Some of 59 Formally, every matrix A with
entries in Z can be factored as
A = UDV, where D is its Smith
normal form, and U and V are
matrices with entries in Z with
determinant ±1. In particular, the
last condition means that U and V
are invertible, and that its inverses
have entries in Z.

its properties are:

1. The form is obtained through a combination60 of row reduction

60 At this point the di↵erence of the
structure of a group as compared to
that of a field becomes prominent.
When coe�cients were in a field,
we could always divide a row by a
non-zero entry. When working with
coe�cients in Z that is not allowed
(except for ±1, which doesn’t really
help). As a result, obtaining the
desired form of a matrix requires us
to involve greatest common divisors
and even then not all non-trivial
diagonal entries can be transformed
to 1.

and the Euclidean algorithm for computing greatest common divi-

sors.

2. The form is unique up to the signs of the elementary divisors.

Elementary divisors generate the torsion part of homology.

We now describe how to obtain homology groups using the Smith

normal form.

• Choose q 2 {0, 1, . . .}.

• Assume matrix D above is the Smith normal form of ∂q+1 with all

diagonal entries positive.

• Compute the rank of ∂q, possibly also through its Smith normal

form.

• Then:

Hq(K; Z) ⇠= Znq�rank ∂q�rank ∂q+1 �
rM

i=1
Zai .

Note that this form may potentially be simplified61 further. 61 If s1, s2 are relatively prime, then
Zs1 ·s2

⇠= Zs1 � Zs2 . Also, if some
ai = 1, then Zai is the trivial group,
i.e., it can be omitted from the
expression.

We conclude by providing analogues of the examples of homology

with field coe�cients:

• The formula for disjoint union holds as before: Hi(K ‰ L; Z) ⇠=
Hi(K; Z)⇥ Hi(K; Z).

• The expression for the Euler characteristic with integer Betti num-

bers is the same: c(K) = b0 � b1 + b2 � b3 + . . ..

• For each n 2 {1, 2, . . .} we have:

– H0(Sn; Z) ⇠= Hn(Sn; Z) ⇠= Z;

– Hi(Sn; Z) = 0, 8i /2 {0, n}.

• For each connected manifold K of positive dimension n we have:

– Hn(K; Z) = 0 if K has boundary.

– Hn(K; Z) ⇠= Z if K is closed orientable.

– Hn(K; Z) ⇠= Z2 if K is closed non-orientable.

• If K is the Klein bottle, then H1(K; Z) ⇠= Z�Z2.

For an extended treatment of these examples see a book62. 62 Allen Hatcher. Algebraic topology.
Cambridge Univ. Press, Cambridge,
2000
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Appendix: cubical homology

The homology construction we described above is called simplicial

homology as it is based on the structure of a simplicial complex: a

space assembled using simplices. However, there are settings in which

alternative shapes of basic building blocks appear to be more suitable.

One such setting is image analysis, where we work with an image

or a video consisting of pixels. In this setting it would be natural to

consider pixels as the building blocks.

Figure 7.28: A 4⇥ 4 image consisting
of grey pixels.

This leads to a new construction63 of complexes and homology: cu-

63 Actually, we could build com-
plexes and the corresponding theory
from many di↵erent shapes of basic
building blocks.

bical complexes and cubical homology. We will restrict ourselves to the

setting of two-dimensional images, meaning the pixels are chosen from

a fixed grid. The construction could easily be generalized to three-

dimensional (movies of 2-D images or a 3-D image) four-dimensional

(movies of 3-D images) or highere-dimensional images with di↵erent

shapes of grids and cubes, or even without a fixed grid.

Let n 2 N and consider a square grid of size n⇥ n, where n refers

to the number of squares along each side, see Figure 7.28. Our image

is given by a collection of pixels (grey squares). The first task is to

define the building blocks:

• 0-dimensional cubes are the vertices appearing on the grid. There

are (n + 1)2 vertices.

• 1-dimensional cubes are the vertical and horizontal edges between

vertices appearing on the grid. There are 2n(n + 1) edges.

• 2-dimensional cubes are the squares of the grid. There are n2

squares.

Figure 7.29: The collection of all
potential cubical simplices.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Figure 7.30: The assignment scheme.

A cubical complex K on an n⇥ n grid is a collection of cubes such

that if s 2 K and t ✓ s, then t 2 K.

Our next task is to determine a convenient systematic labelling for

the squares, edges and vertices. In the context of simplicial complexes

the labels were just the oriented collections of vertices. While the same

approach could64 be used here, there is a more elegant enumeration of

64 Although, the approach would
be cumbersome. We would need 4
vertices to describe a square.

the cubes.

Instead of thinking about coordinates in terms of the n ⇥ n grid,

we systematically imagine all potential cubes of a complex drawn in

a table-like pattern as Figure 7.29 demonstrates. Each cube can be

assigned coordinates (x, y) where x, y 2 {0, 1, 2, . . . , 2n} according

to this pattern. Drawing the corresponding coordinate axes superim-

posed over the original n⇥ n grid (Figure 7.30) we see that a pair of

coordinates (x, y) represents the cube65, whose center is (x, y). We

65 A square, and edge, or a vertex.

additionally define the orientations:

• Each square is oriented with the ordering of its vertices in the

positive-rotational order.
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• Vertical edges are oriented upwards, horizontal to the right.

The resulting assignment of coordinates/labels has the following prop-

erties (see Figure 7.31):

• If x, y are both odd, then (x, y) is a square.

• If exactly one of x, y is odd, then (x, y) is an edge.

• If x, y are both even, then (x, y) is a vertex.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

(3, 5)

(7, 4)

(4, 2)

square

vertex

edge

edge

(0, 1)

Figure 7.31: The assignment scheme.

We are now in a position to define cubical homology. The structure

of the definition is the same as for simplicial homology with the only

essential di↵erence in the boundary map.

Let K be a cubical complex and choose66 a a field of coe�cients F.

66 We could also choose the coe�-
cients from an Abelian group, the
construction would be analogous.

For each q 2 {0, 1, 2} let nq denote the number of q-cubes in K.

1. A q-chain is a formal sum Â
nq
i=1 ais

q
i where ai 2 F and s

q
i is an

oriented cube of dimension q in K.

2. The chain group Cq(K; F) ⇠= Fnq is the vector space of all q-chains.

Its generators are oriented q-cubes of K.

3. For each p 2 N the boundary map

∂p : Cp(K; F)! Cp�1(K; F)

is the linear map defined67 by the following rules: 67 The map encodes the geometric
boundary.

If x and y are both even (vertex): ∂p(x, y) = 0.

If x is odd and y is even (horizontal edge):

∂p(x, y) = (x + 1, y)� (x� 1, y).

If x is even and y is odd (vertical edge):

∂p(x, y) = (x, y + 1)� (x, y� 1).

If x and y are both odd (square):

∂p(x, y) = (x + 1, y)� (x, y + 1)� (x� 1, y) + (x, y� 1).

" The operations between coor-
dinates in the boundary map are
formal summations and subtrac-
tions in the chain group and should
not be considered as operations on
pairs. The coordinates (x, y) are
only labels and shouldn’t be added to
or subtracted from each other. For
example, (0, 0) � (2, 0) is a formal
chain consisting of two vertices with
coe�cients 1 and �1, while label
(�2, 0) is undefined.

As before, ∂2 = 0.

4. The collection of chain groups bound together by the boundary

homomorphisms is the chain complex:

· · · ∂! Cn(K; F)
∂! Cn�1(K; F)

∂! · · · ∂! C1(K; F)
∂! C0(K; F)

∂! 0

5. For each q 2 {0, 1, . . .}. We define groups:
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• q-cycles as Zq(K; F) = ker ∂q  Cq(K; F).

• q-boundaries as Bq(K; F) = Im ∂q+1  Zq(K; F)  Cq(K; F).

• cubical q-homology group as the quotient

Hq(K; F) = Zq(K; Z)/Bq(K; F).

It turns out that the cubical homology of a cubical complex K is

isomorphic to the homology of the simplicial complex obtained by

subdividing the cubes into simplices. In particular, the homology

detects components, holes, and (in the case of higher dimensional

cubical complexes) higher-dimensional holes as simplicial homology

would.

Figure 7.32: The cubical homology of
the above image is given by H0 ⇠= F

(one component) and H1 ⇠= F (one
hole).
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Homology: impact and computation by parts

Homology as defined in the previous chapter is an invariant as-

signed to a simplicial complex. While its homotopy invariance and

computational amenability make homology a suitable tool for compu-

tational purposes, the structural depth of the underlying theory goes

far beyond the presented material.

In this chapter we present some further properties of homology.

The first one is functoriality and its impact on significant topological

results from the beginning of the twentieth century: Brouwer fixed

point theorem, hairy ball theorem, and invariance of domains. The

second property is the ability to combine homology computations of

two parts of a space in order to deduce the homology of the whole

space.

8.1 Impact

One of the fundamental tasks of mathematics is a construction

of new objects (invariants) assigned to known objects. For example,

given a closed surface we can assign to it a triangulation. In turn, we

can assign homology groups to the obtained triangulation.

It turns out to be very beneficial if such an assignment can be ex-

tended in a consistent manner to maps between the objects as well.

When this is the case, we say the assignment is functorial1. It turns 1 Functoriality and its formal con-
sequences are studied within the
category theory.

out that homology is functorial as Proposition 8.1.2 demonstrates.
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Functoriality of homology

Definition 8.1.1. Suppose f : K ! L is a simplicial map between sim-

plicial complexes, q 2 {0, 1, . . .}, and F is a field. The induced maps

f# and f⇤ are defined as follows:

• f# : Cq(K; F) ! Cq(L; F) is the linear map of chain groups de-

fined as

f#

⇣
Â

i
aisi

⌘
= Â

{i | dim( f (si))=q}
ai f (si), ai 2 F, s

q
i 2 K.

• f⇤ : Hq(K; F)! Hq(L; F) is the linear map defined as

f⇤([a]) = [ f#(a)].

" We refrain from specifying q and
F in the notation f⇤ in order not to
overload it with the indices. As such
f⇤ represents the induced map on
homology in any dimension or with
any coe�cients. The relevant choice
of the dimension(s) and coe�cients
should always be apparent from the
context.

T The induced maps in the case of
coe�cients in a group are homomor-
phisms and are still well defined.

T Identity maps between spaces
induce identity maps on homology.
Constant maps between spaces induce
trivial (i.e., zero) maps on homology.

Comments on Definition 8.1.1 using the notation established in it:

1. Given a simplex s 2 K of dimension q, its image f (s) is a simplex

of dimension q or less. The condition on dimension in the definition

of f# means that only the images of those simplices si, which are of

full dimension q, are taken into account. In particular,

f#(s) =

8
<

:
f (s); dim( f (s)) = q

0; else.

2. The induced map f⇤ turns out to be well defined, i.e., if [a] = [b]

then f⇤([a]) = f⇤([b]).

3. Homotopic maps induce the same maps on homology.

4. Suppose X and Y are metric spaces with triangulations K and

L. By the simplicial approximation theorem there exists for each

continuous map f1 : X ! Y a simplicial map f2 between some sub-

divisions of K and L, such that f1 ' f2. Whenever we mention the

homology of X, we formally think of the homology of K. In a simi-

lar manner, whenever we talk about the maps on homology induced

by a continuous map f1, we formally think2 of maps induced by the 2 With this explanation, the notion
of a map on homology induced by
a continuous map between spaces X
and Y is well defined.

simplicial map f2.

,!
f

K L

Figure 8.1: An embedding f : K ! L.
While the first homology groups
of K and L are of dimension 2, the
image f⇤(H1(K; F)) is of dimension
1, demonstrating that the embed-
ding preserves only one hole. This
interpretation will be significantly
expanded within the context of
persistent homology.

The induced maps are consistent with respect to compositions3 as
3 Formally speaking we express this
property by saying that homology is
functorial.

the following proposition explains.
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Proposition 8.1.2. [Functoriality of the induced maps] Suppose maps

f : K ! L and g : L ! M between simplicial complexes are simpli-

cial. Then for each q 2 {0, 1, . . .} and for each F we have

(g � f )# = g# � f#, and (g � f )⇤ = g⇤ � f⇤.

The proof follows straight from the definition.

Figure 8.2: Geometric intuition
dictates that if we want to retract
B2 onto S1 = ∂B2, the resulting map
would need to have a discontinuity,
i.e., at least one point where we
“tear” the disc. A fairly simple proof
of this fact is given using homology.

One of the most natural demonstrations of the power of functori-

ality concerns the existence of retractions. Given a space X and its

subspace4 A ⇢ X, a retraction of X to A is any continuous map

4 A required condition for the exis-
tence of a retraction is for A to be
closed in X.

f : X ! A such that f (a) = a, 8a 2 A. For example, the radial map

from a two-dimensional Euclidean ball with the center removed to its

boundary sphere is a retraction, see Figure 8.7.

Example 8.1.3. For each n 2 N the standard (n� 1)-sphere Sn�1 is

the boundary of the standard n-ball Bn. We claim there is no retrac-

tion Bn ! Sn�1. As a special case, there is no retraction of the unit

interval onto its endpoints.

g f

H1
⇠= F H1

⇠= FH1 = 0
g⇤ f⇤

Figure 8.3: The proof of Example
8.1.3. The composition of maps is
identity on S1, while the composition
of induced maps can’t be identity as
it factors through 0.

Proof. Assume such a retraction f : Bn ! Sn�1 = ∂Bn exists. Pre-

compose it with the inclusion g : Sn�1 ,! Bn, see Figure 8.3. Let

[a] 6= 0 be a basis (generator) of Hn�1(Sn�1; F). We combine two

observations:

• As f � g : Sn�1 ! Sn�1 is identity, ( f � g)⇤([a]) = [a] 6= 0.

• As Hn�1(Bn; F) = 0, g⇤([a]) = 0 and thus f⇤(g⇤([a])) = 0.

By Proposition 8.1.2 ( f � g)⇤([a]) = f⇤(g⇤([a])), a contradiction.

Hence a retraction f does not exist.

Brouwer fixed point

Brouwer fixed point theorem is probably one of the most famous

early results of topology. It has a surprisingly short proof using the

functoriality of homology.

Theorem 8.1.4. Every continuous map f : B2 ! B2 has a fixed point,

i.e., a point x0 2 B2 such that f (x0) = x0.

x

f(x)

y = g(y)

f(y)

g(x)

Figure 8.4: Map g from the proof of
the Brouwer fixed point theorem.

Proof. Assume map f has no fixed point. Define map g : B2 ! S1 by

declaring that for each x 2 B2, point g(x) 2 S1 = ∂B2 is the inter-

section of S1 with the ray starting at f (x) containing x, see Figure 8.4.

As f has no fixed point, such a ray always exists. Map g is a contin-

uous retraction, a contradiction according to Example 8.1.3. Hence a

fixed point exists.
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Hairy ball

Another prominent theorem that can be conveniently proved using

homology is the hairy ball theorem. The name comes from a popu-

lar adaptation of the result: one can’t comb the hair on a hairy ball

without creating a hair whorl.

Figure 8.5: A tangent vector field
on a sphere induces a flow presented
by the streamlines on this figure.
Theorem 8.1.5 states that the vector
field must have a zero, which can
be demonstrated on our example
by the source of streamlines. To
the contrary, there are non-trivial
tangent vector fields in the plane and
on the torus.

Before we state the theorem we need to clarify a few technical de-

tails. Throughout this subsection let S2 denote the unit two-dimensional

sphere in R3.

1. A tangent vector field on the sphere S2 is a continuous map f : S2 !
R3 such that for each x 2 S2 we have x ? f (x). A vector field f is

non-vanishing, if it is non-zero at each point.

2. Given a centrally symmetric5 triangulation K of S2, let a =

5 I.e., the triangulation K has the
following property: for each simplex
t 2 K its reflection through the point
(0, 0, 0) is also a simplex.

Âs(2)2K s be the cycle defined as the sum of consistently oriented

triangles of K. Without loss of generality we may assume the trian-

gles are oriented so that their “upwards” direction is pointing away

from the point (0, 0, 0). Recall that [a] is the fundamental class

spanning H2(K; R) ⇠= R.

3. For each triangle s 2 K the reflection of s through (0, 0, 0) is again

a simplex s0 of K. However, if s has the chosen orientation from

the previous point6, then the reflected triangle has the opposite 6 I.e., such that the chosen normal is
pointing away from the point (0, 0, 0).orientation7 from the originally chosen orientation on s0, see the left
7 I.e., such that the chosen normal is
pointing towards the point (0, 0, 0).portion of Figure 8.6. In particular, [a0] = Âs(2)2K s0 is a non-trivial

homology class representing �[a].

4. Let r : K ! K be the reflection map and let g : K ! K be the

identity map. By 2. and 3. maps g and r are not homotopic as

g⇤([a]) = [a] 6= r⇤([a]) = [a0].

a

b

c

�a

�c

�b

x

�x

f(x) f(�x)

Figure 8.6: Elements of the proof of
Theorem 8.1.5.

On the left side is simplex ha, b, ci
and its (oriented) reflection through
(0, 0, 0): h�a,�b,�ci. Observe that
in both cases the normal to the
simplex is in the direction (1, 1, 1).
The same argument and picture work
for any odd dimension, which leads
to Theorem 8.1.6.

On the right side is the construc-
tion of homotopy from the proof
of Theorem 8.1.5. Point x is con-
nected to �x by the geodesic passing
through f (x) and vice versa.



homology: impact and computation by parts 113

Theorem 8.1.5. Every tangent vector field on S2 has a zero, i.e., there

is no non-vanishing tangent vector field on S2.

Proof. Suppose f is a non-vanishing vector field on S2. Without loss

of generality8 we can assume || f (x)|| = 1, 8x 2 S2. Using the notation 8 I.e., by normalizing each vector in
the image of f .leading to this theorem, we will prove that g ' r, which is a contra-

diction by 4. above. We will construct an explicit homotopy between g
and r. Such a homotopy can be thought of as a continuous collection9 9 A homotopy in question is of the

form H : S2 ⇥ [0, 1] ! S2. For each
y 2 S2 the restriction H|{y}⇥[0,1] is
thus a path from y to �y. The fact
that H is continuous means that the
collection of such paths is continuous.

of paths from x to �x for all10 x 2 S2.

10 While the homology setup above
is performed in the simplicial setting
of K, the homology here will be
constructed on a “smooth” sphere S2.

The simplest way to connect two diametrically opposite points on a

sphere, for the sake of simplicity let us assume we are connecting the

north pole N to the south pole S, is by drawing a meridian between

them. Such a meridian is completely determined by the point at which

it intersects the equator. We define this intersection point to be11

11 Recall that || f (N)|| = 1 and
f (N) ? N, since f (N) lies on the
equator.

f (N).

T A geodesic on S2 is the shortest
path between two points on S2.
Geodesics between N and S are
meridians.

In general, connect x to �x by a geodesic12 on the sphere passing

12 This geodesic traces the trail of
x as translated by the resulting
homotopy. On the other hand, the
trail of �x as translated by the
resulting homotopy is given by
the geodesic from �x to x passing
through f (�x). See the right portion
of Figure 8.6 for a sketch.

through f (x). This is a continuous assignment of paths and consti-

tutes the homotopy between g and r, which completes the proof.

The argument of Theorem 8.1.5 works for any even dimension

which leads to a more general result.

Theorem 8.1.6. The sphere Sn admits a non-vanishing tangent field

i↵ n is even.

When n is even there is an easy construction of a non-vanishing

tangent field:

(x1, y1, x2, y2, . . . , xm, ym) 7! (y1,�x1, y2,�x2, . . . , ym,�xm).

Invariance of domain

The last classical result we mention explains why Euclidean balls of

di↵erent dimensions are fundamentally di↵erent in the sense that they

can’t be homeomorphic13. 13 While homology itself is a homo-
topy invariant, the trick we will use
will allow us to use it to di↵erentiate
homeomorphic types of spaces.Theorem 8.1.7. For any pair of natural numbers m 6= n the closed

balls B1 = BRm(0, 1) and B2 = BRn(0, 1) are not homeomorphic.

T As a consequence of Theorem
8.1.7, Dn 6⇠= Dm if m 6= n. The same
argument gives Rn 6⇠= Rm if m 6= n.Proof. Assume there exists a homeomorphism f : B1 ! B2. Then

f |B1\{0} : B1 \ {0} ! B2 \ { f (0)} is also a homeomorphism. Recall

that B1 \ {0} ' Sn�1 via the radial projection (see Figure 8.7), which

means Hn�1(B1 \ {0}; F) is non-trivial for any F. On the other hand,

B2 \ { f (0)} is either:
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• homotopy equivalent to Sm�1 if f (0) /2 ∂B2, or

• contractible if f (0) 2 ∂B2.

In both cases Hn�1(B2 \ { f (0)}; F) = 0, a contradiction.

Figure 8.7: Radial projection of a
disc with the center removed to the
boundary of the disc. The induced
homotopy equivalence demonstrates
B1 \ {0} ' Sn�1 in the proof of
Theorem 8.1.7.

8.2 Homology by parts

Given a decomposition of a simplicial complex K = A [ B as the

union of subcomplexes A and B, can14 we compute the homology of X

14 A similar question: Given a finite
set Y = C [ D, can we determine
the cardinality |Y| from |C| and |D|?
The answer |Y| = |C| + |D|� |C \ D|,
which also includes the intersec-
tion, is not unlike the answer to our
question about homology...especially
since, for discrete sets, the cardinal-
ity represents the zero-dimensional
homology.

from the homology of A and B?

The answer to this question is unfortunately negative, for example:

• As the sidenote on the right on a similar question demonstrates, the

cumulative zero-dimensional homology of K and L may be too large

and should possibly be decreased by the zero-dimensional union of

the intersection.

• On the other hand, a circle is the union of two 1-discs, i.e., a space

with a one-dimensional hole is the union of two subspaces without

holes.

AA A

BB B

Figure 8.8: Two contractible com-
plexes, whose union is not con-
tractible.

These two examples show that A and B can have cumulatively “too

much” or “too little” homology to deduce the homology of the union

X and that one should probably take into account the homology of

the intersections as well. The algebraic structure through which the

connection between the homologies of X, A, and B is expressed is that

of exact sequences.

Exact sequences

Definition 8.2.1. A sequence of vector spaces V0, V1, . . . and linear maps

jn : Vn ! Vn�1 is exact, if for each n we have Im jn+1 = ker fn.
T Recall that homology is defined
from a sequence of chain groups
called the chain complex; it is de-
fined as the quotient ker ∂/ Im ∂. In
particular, the homology of a chain
complex is zero at all dimensions i↵
the chain complex forms an exact se-
quence. Or, to put it locally, Hq = 0
i↵ the chain complex is “exact at Cq”
in the sense that Im ∂q+1 = ker ∂q.
Homology thus measures the extent
to which a chain complex is not
exact.

It turns out that in an exact sequence, the dimension of each vector

space (except for the last one) can be deduced from the ranks of the

neighboring maps.

Proposition 8.2.2. Suppose the following sequence is exact:

· · ·! Vn+1
jn+1! Vn

jn! Vn�1 ! · · ·! V2
j2! V1

j1! V0.

Then for each n > 0, dim Vn = rank jn+1 + rank jn.

Proof. We know that dim Vn = dim ker jn + rank jn. Now use

exactness: Im jn+1 = ker jn.
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Mayer-Vietoris exact sequence

We are now able to express15 the connection between the homology 15 Standard proofs use zig-zag lemma
given in an appendix.of X and the homology of its two parts A and B, a connection that

also includes the homology of the intersection A \ B.

Theorem 8.2.3. Suppose A, B  X are subcomplexes of a simplicial

complex K such that A[ B = X. Then for each choice of coe�cients

the following sequence of homology groups is exact:

· · ·! Hn+1(X)
dn+1! Hn(A\ B)

(in ,jn)�! Hn(A)�Hn(B)
µn! Hn(X)! · · ·

· · ·! H0(A \ B)
(i0,j0)�! H0(A)� H0(B)

µ0! H0(X)! 0,

with the involved maps defined as follows:

• i⇤, j⇤ are inclusion induced maps, i.e., i⇤[a] = [a] and j⇤[a] = [a].

• µ is the subtraction map, i.e., µ⇤([a], [b]) = [a� b].

• d is a variant of a boundary map defined as follows. Given an n-
cycle a in X, decompose it as a = aA + aB where aA is an n-chain
in A and aB is an n-chain in B. Define d[a] = [∂aA] as the ho-

mology class corresponding to the boundary of the chain aA.

A BA \B

Figure 8.9: A decomposition of S1

into two 1-discs.

Example 8.2.4. We will compute the homology of S1 with coe�cients

in a field F. Express S1 as the union of two 1-discs A and B as Figure

8.9 suggests. The only non-trivial part of the corresponding Mayer-

Vietrois sequence is the following:

H1(A)�H1(B)! H1(X)! H0(A\ B)! H0(A)�H0(B)! H0(X)! 0,

which is of the form

0! H1(X)
d1! F2 (i0,j0)�! F2 µ0! H0(X)

d0! 0,

since A \ B has two components. We proceed by the following sequence

of deductions:

1. rank d0 = 0 as it is the trivial map.

2. Map µ0 is of rank16 1. 16 Recall that µ(u, v) = u � v. Its
rank is either 0, 1, or 2. It can’t be
0 as the map is nontrivial. It can’t
be 2, as it has a non-trivial kernel
generated by (u, u) since A and B are
in the same component of X.

3. By Proposition 8.2.2 we get dim H0(S1) = 1.

4. By exactness and observation 2. we have dim Im(i0, j0) = dim ker µ0 =

1, hence rank(i0, j0) = 1.

5. By exactness and the previous item we have dim Im d1 = dim ker(i0, j0) =

1, hence rank d1 = 1.



116 introduction to persistent homology

6. By Proposition 8.2.2 we get dim H1(S1) = 1.

7. All higher homotopy groups (for n > 1) are trivial as they appear as

· · · 0 ! Hn(X) ! 0 · · · in the exact sequence which, by Proposition

8.2.2, means they are trivial.

Figure 8.10: A decomposition of S2

into two discs, whose intersection is
S1.

Remark 8.2.5. In the same manner we could compute the homology

groups of Sm for each m by observing that it can be decomposed as the

union of two hemispheres (m-discs) whose intersection is homotopy

equivalent to Sm�1, see Figure 8.10.

A BA \B

↵
�

Figure 8.11: A decomposition of
the torus into two parts, whose
intersection is the disjoint union of
two copies of S1.

Example 8.2.6. In a similar manner we can compute the homology

of the torus X with coe�cients in any field F. We will only mention

how to compute its first homology as the homology groups of other

dimensions are already known.

We will use the decomposition of Figure 8.11. The relevant part of

the Mayer-Vietoris sequence is

H1(A)�H1(B)! H1(X)! H0(A\ B)! H0(A)�H0(B)! H0(X)! 0

which is of the form

F2 µ1! H1(X)
d1! F2 (i0,j0)�! F2 ! F ! 0.

We proceed by the following sequence of deductions:

1. By the same argument as in Example 8.2.4 we have rank d1 = 1.

2. The generators of H1(A) and H1(B) are cycles/loops a and b

respectively. Note that a ' b in X thus [a] = [b] 2 H1(X).

Furthermore, as17 0 6= [a] 2 H1(X), we have18 rank µ1 = 1. 17 An algebraic way to see that
0 6= [a] 2 H1(X) is through the
Mayer-Vietrois sequence:

Proof. If [a] was trivial in H1(X)
then ([a], 0) would be in ker µ1. By
exactness, this would mean that
([a], 0) 2 Im(i1, j1). However, Im(i1, j1)
is generated by the images of the
two obvious cycles in A \ B, each of
which maps into (±[a],⌥[b]). Space
Im(i1, j1) is thus one-dimensional
and generated by (±[a],⌥[b]), hence
([a], 0) /2 Im(i1, j1) as [a] 6= 0 in H1(A)
and [b] 6= 0 in H1(B).

18 The map µ1 is defined as
µ1(u, v) = u � v in the basis
([a], 0), (0, [b]) of H1(A) � H1(B).
Its rank is either 0, 1, or 2. Its can’t
be 0 as the map is nontrivial, since
0 6= [a] 2 H1(X). It can’t be 2, as it
has a non-trivial kernel generated by
(u, u) since [a] = [b] 2 H1(X).

3. By Proposition 8.2.2 we get dim H1(X) = 2.

8.3 Concluding remarks

Recap (highlights) of this chapter

• Induced maps on homology and functoriality;

• Brouwer fixed point theorem and hairy ball theorem;

• Exact sequences;

• Mayer-Vietoris exact sequence.
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Background and applications

Invariants of homological nature appear throughout topology, ge-

ometry and other fields of mathematics. The examples of theoretical

applications presented here barely scratch the surface. Some of the

settings in which such constructions contributed to significant develop-

ment include knot theory (Khovanov homology), di↵erential geometry

(De Rham cohomology, Floer homology), etc. For further background

on theoretical foundations see Hatcher’s book19. 19 Allen Hatcher. Algebraic topology.
Cambridge Univ. Press, Cambridge,
2000

The Mayer-Vietoris sequence arises from a decomposition of a space

into two pieces. A natural question about a similar result in the con-

text of decompositions into more pieces is treated within the context

of spectral sequences, an algebraic formalism far above the reach of

our presentation. These theoretical developments allow for a certain

level of distributed computation of homology.

Appendix: zig-zag lemma

Lemma 8.3.1. [Zig-zag lemma] Let F be a field of coe�cients. Assume

the following diagram of vector spaces over F and linear maps20 is 20 For the sake of simplicity the
indices of maps will be omitted. For
example, maps aq : Aq ! Bq are
all denoted by a even though they
depend on q . For the same reason
we will refrain from mentioning F

again.

commutative21:

21 I.e., ∂ � a = a � ∂ and ∂ � b = b � ∂.

...

∂

✏✏

...

∂

✏✏

...

∂

✏✏

0 // Aq+1
a
//

∂
✏✏

Bq+1
b
//

∂

✏✏

Cq+1

∂
✏✏

// 0

0 // Aq
a
//

∂
✏✏

Bq
b
//

∂

✏✏

Cq

∂
✏✏

// 0

0 // Aq�1
a
//

∂
✏✏

Bq�1
b
//

∂
✏✏

Cq�1

∂
✏✏

// 0

...
...

...

If each row is a short exact sequence, and each columns is a chain

T An exact sequence of the form

0! A! B! C ! 0

is called a short exact sequence.
In such a situation, map A ! B is
injective as its kernel is the trivial
image of the map 0 ! A. On a
similar note, B ! C is surjective as
its image is the kernel of the map
C ! 0, which is C. As Im(B ! C) ⇠=
B/ ker(B ! C) we conclude C ⇠= B/A
since equality ker(B ! C) = Im(A !
B) holds by exactness.

complex22, then there exists a long exact sequence of homology groups23 22 I.e., ∂2 = 0.
23 I.e., the homology groups arising
from the vertical chain complexes. In
particular, Hq(A) is the quotient

ker(Aq ! Aq�1)/ Im(Aq+1 ! Aq).

· · · a⇤ // Hq+1(B)
b⇤
// Hq+1(C)

d

tt

Hq(A)
a⇤ // Hq(B)

b⇤
// Hq(C)

d

tt

Hq�1(A)
a⇤ // Hq�1(B)

b⇤
// · · ·
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T Diagram 1:

c � //
_

∂

✏✏

0

0

T Diagram 2:

b1
�

b
//

_

∂

✏✏

c � //
_

✏✏

0

b2
� b

// 0

T Diagram 3:

b1
� //

_

✏✏

c � //
_

✏✏

0

a1
� a

// b2
� // 0

T Diagram 4:

b1
� //

_

✏✏

c � //
_

✏✏

0

a1_

✏✏

� // b2_

✏✏

� // 0

a2
� // 0

The idea of a proof. The proof is performed using the “diagram chas-

ing” technique. We will only prove the existence of the d map.

In order to define d let us choose a non-trivial cycle c 2 Cq+1.

Charted by the diagrams on the right, the chase after d([c]) begins:

Diagram 1: ∂(c) = 0 as c is a cycle.

Diagram 2: By the exactness of the row map b is surjective, thus

there exists b1 2 b�1(c). Define b2 = ∂(b1). By the commutativity

b(b2) = 0.

Diagram 3: By the exactness of the row map there exists a1 2
a�1(b2). Define d([c]) = [a1].

The rest of the proof goes along the same lines. For example, in

order to prove a1 is a cycle we use diagram 4:

• Define a2 = ∂(a1) observe ∂(b2) = 0 as ∂2 = 0.

• By the commutativity a(a2) = 0.

• By the exactness of the row a2 = 0, hence a1 is a cycle.

Remark 8.3.2. The construction and proof of the Mayer-Vietoris se-

quence follows from the zig-zag lemma using the following commutative

diagram (using notation of Theorem 8.2.3)

...

∂

✏✏

...

∂

✏✏

...

∂

✏✏

0 // Cq+1(A \ B)
a
//

∂
✏✏

Cq+1(A)� Hq+1(B)
b
//

∂
✏✏

Cq+1(X)

∂
✏✏

// 0

0 // Cq(A \ B)
a

//

∂
✏✏

Cq(A)� Hq(B)
b

//

∂
✏✏

Cq(X)

∂
✏✏

// 0

0 // Cq�1(A \ B)
a
//

∂
✏✏

Cq�1(A)� Hq�1(B)
b
//

∂
✏✏

Cq�1(X)

∂
✏✏

// 0

...
...

...

with maps a being induced by inclusion, and maps b being the sub-

traction maps24. Observe that the horizontal maps are short exact 24 I.e., b([g1], [g2]) = [g1 � g2].

sequences.

Zig-zag lemma provides a useful template for constructions of ex-

act sequences. Another setting in which it applies is that of relative

homology.
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Appendix: Relative homology

Let us fix a field F, a simplicial complex K, and L  K. Homology

construction on K is based on cycles: chains whose boundaries are

trivial. The concept of relative homology expands this construction in

the following way: given L  K, the relative homology construction is

based on relative cycles, i.e., chains, whose boundaries are contained in

L.

Algebraic specifics of the definition. From the chain complexes of K
and L we can construct the quotient chain complex:

· · · ∂! Cq(K)/Cq(L)
∂! Cq�1(K)/Cq�1(L)

∂! · · · ∂! C0(K)/C0(L)
∂! 0

The relative homology groups Hq(K, L) are the homology groups

arising from this chain complex. In particular:

Hq(K, L; F) =
ker

�
Cq+1(K)/Cq+1(L)

∂! Cq(K)/Cq(L)
�

Im
�
Cq(K)/Cq(L)

∂! Cq�1(K)/Cq�1(L)
� .

T Observe that Hq(K, ∆) = Hq(K).

Combining Lemma 8.3.1 and the commutative diagram

...

∂

✏✏

...

∂

✏✏

...

∂

✏✏

0 // Cq+1(L) �
�

//

∂
✏✏

Cq+1(K) //

∂
✏✏

Cq+1(K)/Cq+1(L)

∂
✏✏

// 0

0 // Cq(L) �
�

//

∂
✏✏

Cq(K) //

∂
✏✏

Cq(K)/Cq(L)

∂
✏✏

// 0

0 // Cq�1(L) �
�

//

∂
✏✏

Cq�1(K) //

∂
✏✏

Cq�1(K)/Cq�1(L)

∂
✏✏

// 0

...
...

...

we conclude that relative homology groups fit into the following exact

sequence:

· · ·! Hq+1(K, L)! Hq(L)! Hq(K)! Hq(K, L)! · · ·

· · ·! H0(L)! H0(K)! H0(K, L)! 0,

Relative homology has a geometric meaning, which expands that

of the usual homology. Table 8.1 summarizes the relative homology of

the pair (K, L) of simplicial complexes from Figure 8.12.

Let us geometrically interpret Table 8.1:
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a b c d

e

f

g

h i j k Figure 8.12: Simplicial complex K.
Its subcomplex L  K contains
vertices a, c, b, d, e, j, k and all edges
between these vertices. It is depicted
by bold red edges.

q dim Hq(K) dim Hq(K, L)

0 3 1
1 2 2

Table 8.1: The comparison of the
homology of K and the relative
homology of the pair (K, L) from
Figure 8.12.

Dimension 0: K has three components. However, the relative homol-

ogy detects only component [ f ]. Homology class [e] is contained in

L and is thus trivial by the definition. Homology class [h] is homol-

ogous to [e] and thus trivial as well.

Dimension 1: A convenient basis for H1(K) would consist of [ha, bi+
hb, ei + he, ai] and [he, ii + hi, hi + hh, ei]. A basis for H1(K, L)

however would consist of [he, ii + hi, hi + hh, ei] and [hj, ci]. Note

that:

• [ha, bi+ hb, ei+ he, ai] is a trivial in H1(K, L) as it is contained in

L.

• hj, ci is a cycle in the relative homology chain complex as its

boundary is contained in L and thus trivial.

f

g

h i

Figure 8.13: The space obtained from
simplicial complex K from Figure
8.12 by contracting the subcomplex L
to a point. The space has two holes
but is not a simplicial complex in
general.

Geometrically we can think of the relative homology H⇤(K, L) as

the homology of the space obtained from K when the subcomplex L
is contracted to a point, see Figure 8.13 for an example. The only

exception to this rule is H0(K, L), whose dimension is one less25 than 25 In the literature this exception
is usually encoded in the phrase
“reduced homology”.

the number of the components of the resulting space26.

26 Note that the resulting space
does not inherit the structure of a
simplicial complex from K. However,
it can be triangulated.
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Persistent homology: definition and computation

The concept of persistent homology along with its varia-

tions is at the forefront of topological data analysis. Mathematically

speaking, persistent homology is an obvious extension of homology:

the functoriality of homology is applied to a sequence of inclusions.

The resulting structure is, somewhat surprisingly, not harder to com-

pute than ordinary homology. When coupled with the standard con-

structions of complexes, persistent homology contains not only topo-

logical but also geometric information.

We will start this chapter by explaining geometric intuition on

persistent homology. We will continue by presenting formal and con-

venient visualisation techniques. We will conclude with a fairly simple

algorithm for computation one could call a “labelled matrix reduction”.

9.1 Definition

We first describe the geometric intuition of persistent homology.

Given a “growing” simplicial complex, persistent homology describes

the evolution of its holes. As an illustrative example we consider four

simplicial complexes K1  K2  K3  K4 of Figures 9.1 and 9.2.

Here is how we interpret the corresponding zero-dimensional bar-

code1 described by Figure 9.1: 1 I.e., the evolution of the compo-
nents.

K1 : There are two components of K1. This fact is visualised by the

fact that there are two bars (blue and red) starting at that time.

The corresponding homology generators2 (points) are colored ac- 2 Note that the generator of the red
component is unique. On the other
hand, we could have chosen any
vertex of the other component as a
generator and color it blue.

cordingly.

K2 : There are three components of K1: this fact is visualised by the

fact that there are three bars (blue, purple and green) passing from

that time on. The corresponding homology generators of the new

components are colored accordingly. However, the two components

of K1 merge, which we interpret as one of the components of K1
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K1 K2 K3 K4 Figure 9.1: Nested simplicial com-
plexes K1  K2  K3  K4 are
divided by vertical lines. The hori-
zontal arrows below are called “bars”
and form a barcode. They indicate
the persistence of zero-dimensional
homology classes: components. The
left endpoint of each bar corresponds
to the birth complex of a component.
The right endpoint of each bar cor-
responds to the terminal complex
of a component. The color of each
bar also appears on one vertex (the
representative of the component) and
potentially on one edge (the edge,
that terminates the component).

disappearing. We declare3 that the component disappearing is the 3 As the components appeared at
the same time, we might as well
have chosen to have the blue bar
terminated and keep the red bar
going. The uncolored barcode would
have remained the same. However,
whenever there is a merger of com-
ponents with di↵erent birth times we
act according to the elder rule: the
older component survives. This will
be apparent at K3. The reader may
rest assured this is not a product of
discrimination but rather a rule that
is consistent with the mathematical
structure of persistence (especially
the interleaving and stability) that
will be described later.

red component, which is visualised by the fact that the red bar

terminates just before K2. The edge making the connection between

the two components is colored in red.

K3 : The purple component terminates by connecting to the blue

component via two edges, one of which is indicated by the purple

color.

K4 : There is no change in components as compared to K3, both bars

are passing through to infinity.

K1 K2 K3 K4 Figure 9.2: Nested simplicial com-
plexes K1  K2  K3  K4 and
the corresponding one-dimensional
homology barcode.

In a similar fashion we interpret the corresponding one-dimensional

barcode4 described by Figure 9.2: 4 I.e., the indicated evolution of the
holes.

K1 : There are no holes and hence no bars passing on.

K2 : A blue hole appears inducing a blue bar.

K3 : The blue hole becomes trivial by the blue triangle and hence the

blue bar terminates. However, two new holes appear, the red one
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and the green one. Consequently, there are two bars passing from

K3 on.

K4 : The red hole becomes trivial while the green hole lives on for-

ever, just as the corresponding bar.

The goal of this chapter is to present the theoretical background

formalizing the presented geometric idea of persistent homology, and

to introduce the computational procedure to obtain the barcodes.

Formal definition

We first formally introduce a filtration: a nested sequence of ever

larger simplicial complexes modelling a growing simplicial complex.

Definition 9.1.1. Let K be a simplicial complex. A (discrete) filtra-

tion of K is a sequence of subcomplexes

K1  K2  . . .  Km = K.

An example of a filtration is given in Figures 9.1 and 9.2.

Persistent homology measures how homology elements5 persist6 5 I.e., components, holes, etc.
6 I.e., remain non-trivialthrough steps of a filtration. A filtration of a simplicial complex K in

Definition 9.1.1 can be expressed as a sequence of natural inclusion

maps denoted by map7 i , : 7 For example, is,t : Ks ,! Kt.

K1
i1,2
,! K2

i2,3
,! . . .

im�1,m
,�! Km = K.

Given a field F and q 2 {0, 1, 2, . . .} we can apply homology

Hq( ; F) to obtain a sequence8 of homology groups connected by 8 By the functoriality of the homol-
ogy we have (iu,t)⇤ � (is,u)⇤ = (is,t)⇤.linear maps:

Hq(K1; F)
(i1,2)⇤���! Hq(K2; F)

(i2,3)⇤���! . . .
(im�1,m)⇤�����! Hq(Km; F) = Hq(K; F)

T In each step of a filtration we
add simplices. The addition of a
single d-dimensional simplex in
one step may either “terminate” a
non-trivial homological element of
dimension d� 1, create a non-trivial
homological element of dimension d,
or have no e↵ect on homology.

T Note that b
q
s,t is a non-increasing

function in t and a non-decreasing
function in s.

Definition 9.1.2. Assume K is a simplicial complex, F is a field, and

q 2 {0, 1, 2, . . .}. Given a filtration

K1  K2  . . .  Km = K

of K, the corresponding q-dimensional persistent homology groups

with coe�cients in F are images of the maps

(is,t)⇤ : Hq(Ks; F)! Hq(Kt; F)

for all 0  s  t  m. The corresponding ranks b
q
s,t = rank(is,t)⇤

are called persistent Betti numbers.
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As is the case with ordinary homology with coe�cients in a field,

each persistent homology group is determined9 up to isomorphism 9 While the rank of (is,t)⇤ determines
the image of the map is,t up to iso-
morphism, it does not determine a
specific bs,t-dimensional subspace of
Hq(Kt; F). In this aspect persistent
homology as a specific subgroup of
Hq(Kt; F) contains more information
that persistent Betti numbers, i.e.,
its basis consists of homology rep-
resentatives spanning the persistent
homology group.

by its Betti number. A single filtration results in a table of persistent

Betti numbers.

Example 9.1.3. Given any field F the following are the tables of the

zero-dimensional and one-dimensional persistent Betti numbers of the

filtration of Figure 9.3:

b0
s,t !

s
t 1 2 3 4

1 2 1 1 1

2 / 3 2 2

3 / / 2 2

4 / / / 2

b1
s,t !

s
t 1 2 3 4

1 0 0 0 0

2 / 1 0 0

3 / / 2 1

4 / / / 1

Table 9.1: The table of persistent
Betti numbers corresponding to
the filtration of Figure 9.3. The
diagonal entries coincide with the
Betti numbers of the corresponding
stages of the filtration. The sub-
diagonal entries are undefined.

Let us demonstrate how to interpret these numbers geometrically:

• b0
2,3 = 2 means that two of the di↵erent components of K2 are still

disconnected from each other in K3.

• b1
3,4 = 1 roughly means that only one homologically non-trivial loop

of K3 is still10 homologically non-trivial in K4. 10 A mathematically correct state-
ment would be: the space of one-
dimensional homology elements in
H1(K4; F) which have represenatives
in C1(K3; F) is of dimension one.

• b1
2,3 = 0 means all one-dimensional homology elements in H1(K2; F)

are homologically trivial in K3.

K1 K2 K3 K4

�0 = 2 �0 = 3 �0 = 2 �0 = 2

�1 = 0 �1 = 1 �1 = 2 �1 = 1

Figure 9.3: A filtration K1  K2 
K3  K4 along with the corresponding
Betti numbers of each of the stage
and the zero-dimensional barcode.

While the tables of persistent Betti numbers are useful, there are

other ways to visualize the evolution of homology groups through a

filtration. One such visualization we have already presented is the

barcode.
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9.2 Visualization

Throughout this section we fix a field F, q 2 {0, 1, . . .}, a filtration

K1  K2  . . .  Km = K,

and 1  s < t  m.

Barcodes

Barcodes have been geometrically introduced above. In this subsec-

tion we will provide their formal definition.

Persistent Betti number b
q
s,t represents the dimension of the sub-

space of homology elements in Kt that have a representative in Ks.

Putting it di↵erently, b
q
s,t indicates the dimension of the collection11 11 This collection is formally not a

linear subspace. In a formal setting
we represent it as the quotient linear
subspace appearing at the end of the
sentence.

of homology elements in Ks that are still non-trivial in Kt in the sense

that b
q
s,t = dim Hq(Ks; F)/ ker(is,t)⇤. Barcodes as indicated above,

however, have more specific information: a bar [s, t) represents a ho-

mology element that is born precisely at s and terminates precisely at

t. Let us phrase this formally:

1. The number of bars containing s and passing through t equals12 12 Through the rest of the section we
will drop the supscript q indicating
the fixed dimension.

b
q
s,t.

2. Homology born at s is defined as13 Hq(Ks; F)/(Im is�1,s)⇤. Its 13 For formal reasons we define (i0,t)⇤
to be the trivial map.dimension is bs,s � bs�1,s and represents the number of bars starting

at s.

3. Homology terminating at t is defined as ker(it�1,t)⇤. Its dimen-

sion14 is bt�1,t�1 � bt�1,t and represents the number of bars termi- 14 Using the fact that ker(it�1,t)⇤ ⇠=
Hq(Kt�1; F)/ Im(it�1,t)⇤.nating at t.

4. The quantity bs,t � bs�1,t represents15 the dimension of homology 15 Compare to the interpretation of
persistent Betti numbers above.
Also note that bs,t � bs�1,t =
dim((Im is,t)⇤/ Im(is�1,t)⇤), i.e., the
dimension of the homology elements
in Hq(Kt; F) that have a representa-
tive in Ks module the ones that have
a representative in Ks�1.

born at s which is still alive at t. It represents the number of bars

starting at s which are passing through t.

5. Quantity ns,t = bs,t�1 � bs�1,t�1 � (bs,t � bs�1,t) represents16

16 Observation 4. interprets this for-
mula as [the dimension of homology
born at s which is alive at t � 1] -
[the dimension of homology born at s
which is still alive at t] .

the dimension of homology born at s which terminates at t. It

represents the number of bars starting at s and terminating at t.

6. We additionally define ns,• = bs,m � bs�1,m, which represents the

dimension of homology born at s which is still alive at the end of

the filtration.

The q-dimensional barcode17 consists of intervals18 of the form 17 ...of the chosen filtration with
coe�cients in F...
18 In the setting of a barcode these
intervals will be called bars.

i. [s, t) for 1  s < t  m, and

ii. [s, •) for 1  s < m.
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A barcode can have multiple19 copies20 of each interval. Fixing 19 ...or none...
20 Alternatively, we could think
of the barcode as the collection of
all possible intervals of the forms
(i) and (ii), each with an assigned
multiplicity from {0, 1, 2, . . .}.

1  s < t  m:

• The number of the intervals [s, t) is denoted by ns,t.

• The number of the intervals [s, •) is denoted by ns,•.

Example 9.2.1. We again turn our attention the familiar filtration

in Figure 9.3. From the table on the right we can deduce that n2,3 =

1� 1� (2� 3) = 1 and as a result there is 1 bar of the form [2, 3), as

displayed in the figure. In a similar fashion we compute n1,2 = n1,• =

n2,• = 1 and n1,3 = n1,4 = n2,4 = n3,4 = n3,• = n4,• = 0.

b0
s,t !

s
t 1 2 3 4

1 2 1� 1+ 1
2 / 3+ 2� 2
3 / / 2 2
4 / / / 2

Computing n2,3 of Figure 9.3: the
coloring corresponds to the defining
formula and the subscripts to the

signs within.

A barcode represents the persistences of homology elements. The

longer a bar, the longer the corresponding homology element persists.

In most settings the longer persistence of a homology element also

means higher importance21. However, there are also settings in which 21 I.e., a more prominent topological
feature.information is contained in shorter bars, especially when the bars are

numerous and specifically distributed.

Persistence diagrams

Another established method of visualisation of persistent homol-

ogy are persistence diagrams defined as follows. Given a barcode as

defined above we can think of an interval [s, t) as a pair of numbers

and visualize22 it as a point (s, t) 2 R2. A point of the form (s, •) 22 Just as there can be more bars
with the same endpoints in a bar-
code, there can be more copies of the
same point visualized at the same
location in a persistence diagram.
While multiple such intervals can
be visualized in a vertical stack, the
same can not be done with points.
For this reason we always consider a
point (s, t) in a persistence diagram
as a weighted point with weight
(multiplicity) ns,t.

obviously can’t be drawn in a plane so we choose a y-coordinate above

k, perhaps most conveniently as k + 1, to act as a representative of •,

i.e., a bar [s, •) corresponds to a point (s, k + 1). Each point (s, t) of

a persistence diagram has an assigned multiplicity ns,t, which repre-

sents the number of bars of the form [s, t). In the case of (s, k + 1), the

multiplicity is ns,•.

The result is a collection of weighted points in the plane called a

persistence diagram. An example is provided in Figure 9.4.

A barcode encodes precisely the same information as a persistence

diagram. While the persistence of a bar is measured by its length,

the persistence of a point on a persistence diagram is measured by its

distance from the diagonal D = {(x, x) | x 2 R}. All points of a

persistence diagram lie above D. T Theoretically speaking, if there
existed bars [s, s) of length zero, then
these would have been the shortest
bars. They would have corresponded
to diagonal points (s, s). This point
of view will come handy in the next
chapter in the context of stability.

Persistence diagrams are often the chosen method of visualization

when it comes to representation of persistent homology. Especially

when the number of points and bars is large, their distribution seems

to be well represented by persistence diagrams. On the other hand,

when the number of points and bars is low, a barcode is often more

descriptive.
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K1 K2 K3 K4

1 2 3 4

1

4

3

2

1

Figure 9.4: A filtration along with
the corresponding zero-dimensional
barcode and persistence diagram.
The colors of bars match the colors
of the corresponding points in the
persistence diagram.

The fundamental lemma of persistent homology

Numbers ns,t are defined using persistent Betti numbers bs,t. It

turns out that the reverse expression also exists.

Lemma 9.2.2. [Fundamental lemma of persistent homology]

bs,t = Â
s0s, t0>t

ns,t

" In this setting, condition t0 > t
implies that t0 as an index in n could
also take the value •.
T Lemma 9.2.2 has a geometric
interpretation in the context of
persistence diagrams, see Figure 9.5.
It essentially states that bs,t is the
sum of all multiplicities of points of
a persistence diagram, which lie in
the upper-left quadrant [0, s]⇥ (t, •]
with the apex at (s, t). In the context
of this interpretation, the formula for
multiplicity ns,t = bs,t�1 � bs�1,t�1 �
bs,t + bs�1,t is the expression of the
square (s� 1, s]⇥ [t� 1, t) in terms of
such quadrants.

The formula in the lemma can be verified explicitly. However, the

statement is apparent from the definitions, as

• bs,t represents the homology born at s or before and terminating

after t;

• ns,t represents the homology born precisely at s and terminating

precisely at t.

Lemma 9.2.2 implies that the information encoded in a barcode

or in a persistence diagram is precisely the same as the information

encoded by persistent Betti numbers.

1 2 3 4

1

4

3

2

1

�2,3 = 2

Figure 9.5: The sum of multiplicities
of points in the blue quadrant with
apex (2, 3) is b2,3 by Lemma 9.2.2.
It equals 2 as the point (2, 3) is not
contained in it, see also the table in
Example 9.1.3.

9.3 Computation

While the multiplicities ns,t of points of persistence diagrams are

formally expressed by persistent Betti numbers, there is an algorithm

to obtain them directly without referring to the Betti numbers and

the corresponding k(k + 1)/2 ranks of maps. In this section we will

present perhaps the simplest23 version of the algorithm, which is also

23 There exist many improvements
of this algorithm which may sig-
nificantly improve the computing
time.

the most illustrative. We will proceed in two steps:

• compute the matrix reduction, and

• extract the persistent homology.
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We will conclude the section with an example.

Throughout this section we fix a field F and filtration

K1  K2  . . .  Km = K.

Parameter q 2 {0, 1, . . .} will denote the dimension of a considered

object.

Matrix reduction

This part could be called an annotated matrix reduction using only

column operation from the left.

1. Order simplices consistently with the filtration. For each q order

all q-simplices in an order in which they appear in the filtration.

If more simplices appear at the same time their internal order is

immaterial24. 24 It would eventually e↵ect the
obtained critical simplices and rep-
resentatives, but not the persistent
homology.

2. For each q construct the boundary matrix Mq using the order

chosen in 1 to label columns and rows.

3. For each q reduce Mq from the left using a single type of column

operations: the addition of an F-multiple of any of the previous25 25 In the chosen order from 1.

columns to a treated column. Specifically, starting with the leftmost

column go through all the columns by passing to the right and for

each column:

(a) Determine the pivot26. 26 The lowest non-trivial entry in the
column

(b) If any of the previous columns on the left has a pivot in the

same row, subtract the appropriate multiple of that column so

that the pivot of the current column either disappears or its

location is moved up.

(c) Repeat as long as there are matching pivots on the left.

For each q the resulting matrix is denoted by M0q. Each of its

columns is either trivial or has a pivot, whose row is unique amongst

all pivots.

Extracting persistence

At this point we have su�cient information to extract homology

of Km from the number of pivots27. However, we can also use the 27 Note that the rank of a matrix is
the number of its pivots in a reduced
form, and the ranks themselves
su�ce to compute the Betti numbers.

locations of pivots to extract numbers ns,k required to construct the

barcode and persistence diagram. In order to explain the extraction

process we first recall the incremental expansion.

Given a simplicial complex, an addition of a single q-simplex can

change the homology in two ways:
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• If its boundary is a linear combination of boundaries of other

q-simplices28, then the simplex gives birth to a non-trivial q- 28 I.e., if, after adding the simplex
to the boundary matrix as the
rightmost column, its column gets
reduced to the trivial column by the
above reduction.

dimensional homology element. In this case we call the simplex a

birth simplex.

• If its boundary is not a linear combination of boundaries of other

q-simplices29, then the simplex terminates a non-trivial (q � 1)- 29 I.e., if, after adding the simplex
to the boundary matrix as the
rightmost column, its column does
not reduce to the trivial column.

dimensional homology element. In this case we call the simplex a

terminal simplex.

A filtration can be considered to be a sequence30 of incremental 30 A specific sequence should respect
the ordering given by a filtration as
in 1. above, and also the structure of
a simplicial complex, i.e., a simplex
cannot be added before all of its
faces are present.

expansions. At each stage of the filtration we may assume we first

add all vertices according to the ordering in 1., then all edges, etc.

Combining such an ordering through all stages we get a sequence of

incremental expansions inducing boundary matrices Mq and their

reduced forms M0q.
Based on such an ordering each simplex of K is either a terminal

simplex or a birth simplex. We are now in a position to extract persis-

tence diagram and barcode:

T As each row contains at most one
pivot, each birth simplex is paired
to at most one terminal simplex. A
terminal simplex cannot appear as
the label of a pivot column.

• For each terminal q-simplex t there exists a paired birth (q � 1)-

simplex s, which is the label of the pivot in the column t. Such a

pair induces a bar [s, t) in the corresponding barcode or, equiva-

lently, a point (s, t) in the corresponding persistence diagram, where

s, t are the stages of the filtration at which s and t appear31. 31 Note that if s = t we obtain
an empty interval in the barcode
and a point on the diagonal in the
persistence diagram, both of which
we ignore in the visualization as they
represent elements of persistence
zero. This is consistent with our
interpretation of persistent homology,
which measures only holes that
persist through at least one stage of
the filtration.

• Each birth simplex which is not paired to a terminal simplex in-

duces a bar [s, •) in the corresponding barcode or, equivalently, a

point (s, m + 1) in the corresponding persistence diagram, where s is

the stage of the filtration at which s appears.

T It turns out that the presented
definition and computation of the
barcode respects the elder rule
mentioned at the beginning of the
chapter.

As a result we obtain a barcode and a persistence diagram as

demonstrated in the example in the last subsection.

Representatives

Occasionally we are also interested in homology representatives of

the bars and points of persistence diagrams. These can be extracted

from the reduction process. In this subsection we present the most

direct way of generating representatives. Given a bar with the birth

simplex s and the terminal simplex t we define:

• The birth representative of s as the chain formulated32 by the re- 32 For example, in the next sub-
section we provide an example in
which the column hc, di is reduced
to the zero column by subtract-
ing the column hb, di and adding
the column hb, ci. This means
∂hc, di � ∂hb, di + ∂hb, ci = 0 and
hence hc, di � hb, di + hb, ci is the
chain that is our birth representative.

duction of the column corresponding to s to the zero column in the

column reduction scheme. In particular, if the linear combination

turning column s into the zero column in our column reduction

scheme is encoded in terms of columns as ∂s � Âi li∂si = 0, then
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the birth representative is a = s�Âi lisi. The birth representative

gives a homology class [a] that is born33 by the addition of s. 33 " Homology class [a] is not the
only homology class born by the
addition of s. If [b] is another homol-
ogy class of the same dimension that
has existed before the addition of s,
then [a + b] is also a homology class
born by adding s.

• The terminal representative is encoded by the column correspond-

ing34 to t in the reduced matrix.

34 For example, in the next sub-
section we provide an example in
which the column corresponding to
hb, c, di in M02 encodes the terminal
representative hb, ci+ hd, bi+ hc, di.

The birth representative and the terminal representative typically

do not represent the same homology class. The birth representative

may not even be a good representative of the corresponding bar in

the sense that it may remain homologically non-trivial beyond35 the

35 See the discussion on the represen-
tatives of 0-dimensional bars below
for an example.

appearance of the corresponding terminal simplex. On the other hand,

infinite intervals do not have a terminal representative. As a result we

define the representative of a bar as follows:

1. If the bar is a finite interval, the representative of the bar is the

terminal representative.

2. If the bar is an infinite interval, the representative of the bar is the

birth representative.

U There is no guarantee that these
representatives are geometrically
the most convenient. There are
more involved ways of obtaining
representatives that optimize given
criterion function. For example,
we may want to obtain the shortest
1-dimensional representatives, etc..

T Let us prove that the lifespan of
the homology class of the terminal
representative b corresponds to the
lifespan of the corresponding bar:

• [b] appears by the time s appears
by construction;

• if a representative b0 of [b] ap-
peared before s, then the column
corresponding to t could have
been reduced further to b0 thus
eliminating the pivot labeled as s,
a contradiction.

• [b] becomes trivial by the time t
emerges by definition;

• if [b] became trivial sooner, its
expression as a boundary could
be used to reduce the t column to
the zero column, a contradiction.

This choice of representatives is algebraically sound in the sense

that the representatives form a basis of the elementary intervals of the

decomposition described in the structure theorem for persistent homol-

ogy, a result we discuss in details in the next chapter. This statement

includes the fact that the lifespan of each representative matches the

lifespan of the corresponding bar, and that the representatives are

linearly independent36 at all times.

36 ...or trivial beyond their lifespans

In practice we sometimes deviate from the algebraically orthodox

choice when declaring the representatives of 0-dimensional bars: we

choose the birth representative as a bar representative even if the bar

is bounded. Let us explain this geometrically motivated exception on

the example of the next subsection, where pair (hbi, ha, bi) induces a

0-dimensional bar. Sometimes we would geometrically like to think of

this bar as a representation of the component containing b merging

with a larger component, hence the choice of the birth representative

hbi which fits into this geometric intuition. However, we should be

aware that the homological element [hbi] does not become trivial37 37 The terminal representative hbi �
hai does become trivial. In fact, [hbi]
never becomes trivial.

after adding ha, bi. In terms of homology the appearance of ha, bi
identifies38 [hai] = [hbi] rather than sets [hbi] = 0. 38 In this sense, the terminal repre-

sentative tells us which two compo-
nents merge.

Example

Let us compute persistent homology of our standard example, see

Figure 9.4. The annotation of simplices we will be using is provided in

Figure 9.6. The chosen order is apparent from the following boundary

matrices, in which vertical and horizontal lines divide simplices from

di↵erent stages of the filtration.
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M1 =

0

BBBBBBBB@

hb, ci hb, di ha, bi hc, di ha, ci ha, ei hb, ei
hai �1 �1 �1
hbi �1 �1 1 �1
hci 1 �1 1
hdi 1 1
hei 1 1
h f i

1

CCCCCCCCA

a

b

c

d

e

f

Figure 9.6: The annotation of sim-
plices of K.

M2 = M02 =

0

BBBBBBBBBB@

hb, c, di ha, b, ei
hb, ci 1
hb, di �1
ha, bi 1
hc, di 1
ha, ci
ha, ei �1
hb, ei 1

1

CCCCCCCCCCA

We now perform the labelled matrix reduction as described above.

U Green entries are the pivots.

T In the matrices below a blue col-
umn is modified using red columns.

U ∂hc, di = ∂hb, di � ∂hb, ci.
M1 =

0

BBBBBBBB@

hb, ci hb, di ha, bi hc, di ha, ci ha, ei hb, ei
hai �1 �1 �1
hbi �1 �1 1 �1
hci 1 �1 1
hdi 1 1
hei 1 1
h f i

1

CCCCCCCCA

U ∂ha, ci = ∂ha, bi+ ∂hb, ci.

0

BBBBBBBB@

hb, ci hb, di ha, bi hc, di ha, ci ha, ei hb, ei
hai � 1 � 1 �1
hbi �1 �1 1 �1
hci 1 1
hdi 1
hei 1 1
h f i

1

CCCCCCCCA

U ∂hb, ei = ∂ha, ei � ∂ha, bi.

0

BBBBBBBB@

hb, ci hb, di ha, bi hc, di ha, ci ha, ei hb, ei
hai � 1 � 1
hbi �1 �1 1 �1
hci 1
hdi 1
hei 1 1
h f i

1

CCCCCCCCA
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M01 =

0

BBBBBBBB@

hb, ci hb, di ha, bi hc, di ha, ci ha, ei hb, ei
hai �1 �1
hbi �1 �1 1
hci 1
hdi 1
hei 1
h f i

1

CCCCCCCCA

We can now extract the barcode from the birth-terminal pairs and

unpaired birth simplices. We start by extracting the zero-dimensional

barcode from the pivots of M01 and unpaired vertices.

• Pairs (hci, hb, ci) and (hdi, hb, di) provide no contribution39. 39 Formally, they contribute the
empty interval [1, 1) as all involved
simplices appear at K1.• Pair (hbi, ha, bi) induces a 0-dimensional (component) bar40 [1, 2)
40 Recall that hbi appears at K1 while
ha, bi appears at K2, hence the values
of the endpoints.

representedby [hbi].

• Pair (hei, ha, ei) induces a 0-dimensional (component) bar [2, 3)

represented by [hei].

• Vertices a and f are unpaired and thus induce 0-dimensional bars

[1, •) (generated by [hai]) and [2, •) (generated by [h f i]).

U In this example the 1-dimensional
birth and terminal representatives
coincide. This is not generally the
case.

We next extract the one-dimensional barcode from the pivots of M02
and unpaired edges.

• Pair (hc, di, hb, c, di) induces a 1-dimensional bar [2, 3) repre-

sented41 by [hc, di � hb, di+ hb, ci].
41 Recall that hc, di appears at K2
while hb, c, di appears at K3, hence
the values of the endpoints. The
linear combination that made the
column corresponding to hc, di trivial
in M01 was ∂hc, di � ∂hb, di + ∂hb, ci
and hence the representative.

• Pair (hb, ei, ha, b, ei) induces a 1-dimensional bar [3, 4) represented

by [hb, ei � ha, ei+ ha, bi].

• Edge ha, ci is unpaired and thus induces the 1-dimensional bar

[3, •) generated by [ha, ci � ha, bi � hb, ci].

Computational tricks

We conclude by mentioning a trick that speeds up the computation

of persistent homology. It is based on an observation that boundary

matrices Mi that are being reduced in the reduction process are not

completely independent of each other.

If the reduction process of Mq reduces the column corresponding

to q-simplex t to a non-trivial column, we can extract the following

information

1. t is a terminal simplex and hence the row corresponding to t in

Mq+1 will have been reduced to the zero-row, which means we can

set it to zero immediately.
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2. The pivot location reveals the corresponding birth simplex s. As

a result the column corresponding to s in Mq�1 will have been re-

duced to the zero-column and can hence be set to zero immediately.

T Overview: reducing a t-column to
a non-zero column reveals:

• t is a terminal simplex;

• t-row is trivial;

• pivot label s is a birth simplex;

• s-column is trivial.

Hence a single reduction of a column in Mq corresponding to a

terminal simplex also reveals a zero-row in Mq+1 and a zero-column

in Mq�1. Of course, this information can’t be of much help if it has

already been extracted from previous reductions. For this reasons the

matrices Mq can be reduced in the order of decreasing dimension: this

way no column in Mq�1 has been reduced by the time Mq has been

reduced and as a result we avoid reducing almost half42 the columns 42 This estimate depends on the
filtration but seems to hold for most
of the practical cases.

resulting in a significant speedup.

9.4 Concluding remarks

Recap (highlights) of this chapter

• Persistent homology;

• Barcode;

• Persistence diagram;

• Computing persistent homology.

Background and applications

Persistent homology43,44,45 is perhaps the most popular and fruit- 43 Herbert Edelsbrunner, David
Letscher, and Afra Zomorodian.
Topological persistence and simpli-
fication. Discrete & Computational
Geometry, 28(4):511–533, 2002. doi:
10.1007/s00454-002-2885-2
44 Herbert Edelsbrunner and John
Harer. Computational Topology: An
Introduction. Applied Mathematics.
American Mathematical Society,
2010. doi: 10.1090/mbk/069
45 Tamal K. Dey and Yusu Wang.
Computational Topology for Data
Analysis. Cambridge: Cambridge
University Press, 2022. doi:
10.1017/9781009099950

ful construction of topological data analysis. For the past two decades

it has been an inspiration to extensive theoretical and practical treat-

ments, spanning from purely mathematical theoretical foundations46

46 We will mention two ideas of
generalizations of the standard
persistent homology in the appendix.

to computable aspects and applications in numerous fields of science

and engineering. When coupled with standard constructions of com-

plexes, persistent homology contains information about geometry of

data. As such, the method is applied whenever the geometric shape of

data is thought to contain significant information.

Applications include de-noising schemes, dimension reduction

schemes, feature extraction methods, and specific data analysis of

materials, molecular structures, medical images, weather patterns, etc.

The combinatorial treatment of this chapter will be followed by

further properties in the following chapter. While the definition of

persistent homology could have been expressed using coe�cients in

an Abelian group, the visualizations47 and e�cient implementations48 47 I.e., barcodes and persistence
diagrams.
48 I.e., matrix reductions.

crucially depend on the structure of a field.

http://dx.doi.org/10.1007/s00454-002-2885-2
http://dx.doi.org/10.1007/s00454-002-2885-2
http://dx.doi.org/10.1090/mbk/069
http://dx.doi.org/10.1017/9781009099950
http://dx.doi.org/10.1017/9781009099950
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Appendix: zig-zag persistence and multi-parameter persistence

In this appendix we will sketch the ideas of two generalizations of

the standard persistent homology as presented throughout the chapter.

In both cases the generalization refers to the type of filtration used.

The first generalization is based on zig-zag filtration. While a stan-

dard filtration models a growing simplicial complex, a zig-zag filtration

models a changing simplicial complex, in which the simplices may be

appearing or disappearing.

T In case L1, L2, . . . , Lm are sub-
complexes of a simplicial complex
L not satisfying the condition of a
zig-zag filtration, and we still want
to compute a meaningful zig-zag ho-
mology, a standard way to construct
a corresponding zig-zag filtration is
to connect them either by unions or
intersections:

K1 ,! K1 [ K2  - K2 ,! . . . - Km,

K1  - K1 \ K2 ,! K2  - . . . ,! Km.

Interestingly enough, while the two
options induce generally di↵erent
barcodes, they encode precisely the
same information.

Definition 9.4.1. Let K be a simplicial complex. A zig-zag filtration

of K is a sequence of subcomplexes K1, K2, . . . , Km of K, such that for

each i 2 {1, 2, . . . , m� 1} either Ki  Ki+1 or Ki+1  Ki.

For example, a zig-zag filtration may be of the following sort:

K1 ,! K2  - K3  - K4 ,! K5  - K6 ,! K7.

It turns out that even in this setting there exists an algorithm based

on matrix reductions which will produce a well defined barcode49 49 Or, equivalently, a persistence
diagram.describing what is called zig-zag persistence. An example is displayed

in Figure 9.7.

,! -  -

K1 K2 K3 K4

K1 K2 K3 K4

Figure 9.7: A zig-zag filtration and
the corresponding zero-dimensional
barcode, visualized as a table for
technical reasons (i.e., the absence of
a designated direction of all arrows
as endpoints of bars). In the same
way we could have presented the
barcodes of ordinary persistent
homology as well.

The second generalization is based on a multi-parameter filtra-

tion. While standard filtration models a one-parameter50 growth of 50 I.e., a sequential.

a simplicial complex, multi-parameter filtration models growth with

more degrees of freedom. For our demonstrative purposes it su�ces to

formally introduce only a 2-parameter filtration.



persistent homology: definition and computation 135

Definition 9.4.2. Let K be a simplicial complex. A 2-parameter fil-

tration of K is a collection of subcomplexes Kj,k  K parameterized

with j, k 2 {1, 2, . . . , m}, such that for each j 2 {1, 2, . . . , m � 1}
and for each k the following containments hold (see Figure 9.8):

• Kj,k  Kj+1,k, and

• Kk,j  Kk,j+1.

K1,1 ,! K2,1 ,! · · · ,!K3,1 ,! Km,1

,! ,! ,! ,!

K1,2 ,! K2,2 ,! · · · ,!K3,2 ,! Km,2

,! ,! ,! ,!

...
...

...
...

,! ,! ,! ,!

K1,m ,! K2,m ,! · · · ,!K3,m ,! Km,m

Figure 9.8: A scheme of a 2-
parameter filtration.

There are theoretical and practical settings in which multi-parameter

filtrations arise naturally. A multi-parameter persistent homology is

the object obtained by applying the homology to spaces and maps of

such a filtration. Unfortunately, there exists no convenient51 visual- 51 While a 1-parameter persistent
homology “decomposes” into simple
pieces called bars (we will explain
this statement in detail in the next
chapter), the pieces of a multi-
parameter persistent homology can
be quite complicated and not easily
visualized or encoded.

ization52 in this setting. As a result, theoretical treatments of multi-

52 ...such as multi-dimensional bar-
code or persistence diagram.

parameter persistent homology typically deal with a multi-dimensional

grid of interconnected homology groups, while practical applications

of the same object use incomplete information about it such as multi-

parameter tables of Betti numbers, restrictions to a 1-parameter filtra-

tions yielding a standard barcode, etc. For more details see a book53.

53 Tamal K. Dey and Yusu Wang.
Computational Topology for Data
Analysis. Cambridge: Cambridge
University Press, 2022. doi:
10.1017/9781009099950

http://dx.doi.org/10.1017/9781009099950
http://dx.doi.org/10.1017/9781009099950
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Persistent homology: stability theorem

In the previous chapter we introduced persistent homology and

its basic method of computation in the discrete setting. However, it

turns out that the concept of persistent homology can be treated on a

much deeper theoretical level, through which many of its advantages

become apparent.

In this chapter we will delve further into the theoretical machin-

ery of persistent homology. We will introduce continuous filtrations

and the underlying algebraic structure of persistence modules. These

structures will be crucial in the formulation of the stability theorem,

which states that, unlike homology, persistent homology behaves con-

tinuously with respect to the underlying filtration. We conclude by

mentioning a series of interpretations and examples of our expanded

scope of persistence.

10.1 Continuous filtrations

Recall that a discrete filtration of a simplicial complex K is a se-

quence of subcomplexes

K1  K2  . . .  Km = K.

An example of a filtration is given in Figure 10.1.

K1 K2 K3 K4 Figure 10.1: A discrete filtration.

Discrete filtrations1 formalize finite nested sequences of complexes. 1 I.e., filtrations given by finitely
many nested simplicial complexes
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While this approach is geometrically intuitive, there is an alternative

shorter description of a filtration.

1

1

1

1

1

1

2

2

2

2

3

3

4

3

3

Figure 10.2: The annotation of
simplices encodes the filtration of
Figures 10.1.

Rather than storing a sequence of separate subcomplexes, we anno-

tate each simplex s 2 K by the index f (s) at which s first appears.

Given such an annotation it is easy to reconstruct Ki = {s 2 K |
f (s)  i}. See Figure 10.2 for an example. This observation motivates

us to expand the scope of filtrations in two ways: by considering con-

tinuous filtrations with infinitely many subcomplexes; and by defining

filtrations from an appropriate annotation function.

1. A continuous filtration of a finite simplicial complex K is a collec-

tion of subcomplexes2 {Kr}r�0 of K such that 2 Throughout the book we will addi-
tionally require that for each simplex
s 2 K the minimum argminr{s 2 Kr}
exists, i.e., there exists the smallest
scale r at which s appears. An equiv-
alent condition is the following: for
each r there exists r0 > r such that
Kr = Kr0 , i.e., if a simplex is absent
at scale r, it is also absent at slightly
larger scales.

Under this condition each continu-
ous filtration is the sublevel filtration
of its associated annotation func-
tion. In particular, each sublevel
filtration is a continuous filtration
and vice versa. The Rips and Cech
filtrations as defined in Chapter 5 are
continuous filtrations of this sort.

8r < q : Kr  Kq  K.

2. Given a simplicial complex K, let f be a filtration function, i.e., an

annotation of each of the simplices of K by a non-negative number

such that s  t =) f (s)  f (t). The sublevel filtration associ-

ated to f is a continuous filtration consisting of sublevel complexes3

3 In this setting parameter r is often
referred to as the scale, a notion aris-
ing from Rips and Cech filtrations,
or the level, a notion arising from the
filtration function.

Kr = {s 2 K | f (s)  r}  K for r � 0.

There are two motivating reasons for the introduction of continuous

filtrations:

• Most of the standard constructions of filtrations actually yield

continuous filtrations: Cech filtration4, Rips filtration5, filtration by

4 The corresponding filtration func-
tion on simplices being the radius
of the smallest enclosing ball of the
vertices.
5 The corresponding filtration func-
tion on simplices being the diameter
of the set of vertices.

alpha complexes, sublevel filtration, etc.

• The interleaving structure and the resulting stability theorem de-

pend6 on the continuous choice of parameter.

6 To be discussed in detail later. In a
nutshell, the continuous choice of the
parameter eventually results in the
continuity of persistent homology.

The definition of persistent homology groups for continuous filtra-

tions is the same, with the only di↵erence being the continuous range

of the indices 0  s  t, which results in nominally infinitely many

persistent homology groups. The matrix-reduction based computation

of persistent homology is unhindered by the expansion to continuous

filtrations as the computations depend only on filtration function de-

fined on (finitely many) simplices, and do not require all (infinitely

many) complexes of filtration separately. In a nutshell, we can com-

pute the same barcodes using the same procedure for continuous or

discrete filtrations.

We next discuss the interpaly between discrete and continuous

filtrations:

1. Given a discrete filtration, there is an obvious extension of it as the

sublevel filtration of the annotation function.



persistent homology: stability theorem 139

Figure 10.3: An excerpt from the
Rips filtration on the five points on
the left.2. Given a continuous sublevel filtration {Kr}r�0 associated to a fil-

tration function f there are two ways of generating a discrete filtra-

tion:

(a) By restriction to K1  K2  . . .  Kdmax f e. While mathe-

matically convenient, this approach has many drawbacks7 and is 7 The corresponding continuous
filtration as defined by 1. may be
significantly di↵erent from {Kr}r�0.
The information about the sequence
of changes between each pair of
integer scales is lost.

mostly avoided.

(b) A more beneficial way of thinking about the index i of a dis-

crete filtration is not as the scale parameter8 but rather as the
8 An interpretation prevalent in the
context of continuous filtrations.

index of the critical scale9 of the continuous filtration. Formally

9 A scale r of a continuous filtration
is critical, if at least one simplex
appears at r.

speaking we define critical scales r1 < r2 < . . . < rk as the

enumeration10 of the image of f and define

10 {r1, r2, . . . , rk} = Im f .Ki = {s 2 K | f (s)  ri}.

The corresponding finite filtration contains information about all

changes in the original continuous filtration.

Continuous filtrations conveniently model the geometric setup of

the standard filtrations. On the other hand, discrete filtrations are

a convenient finite description on which we may develop algorithmic

approaches.

T From this point on, whenever we
mention an unspecified filtration, or
consider a transition from a finite to
continuous filtration or vice versa,
the underlying interplays we have
in mind are 1. and 2. (b). For an
example see Figure 10.4.

r = 0 r = 1/2 r = 1/
p
3

0 0

0

1/2 1/2

1/2

1/
p

3

Figure 10.4: The Cech filtration on
three vertices forming an equilateral
triangle of side length 1 nominally
consists of infinitely many simplicial
complexes. However, only at scales
0, 1/2 and 1/

p
3 do the changes

occur and hence the corresponding
discrete filtration (according to 2
(b) above) consists of simplices at
those scales, depicted by the first
three complexes in the figure. The
annotation function is provided on
the right, its image consists of the
mentioned scales.

Example 10.1.1. [Topology of o↵sets] Given a finite collection of points

S ⇢ Rn we have already mentioned that the nerve theorem implies that

for each r > 0 the Cech complex Cech(S, r) is homotopy equivalent to

the r-neighborhood11 N(S, r) of S: 11 Also called the r-o↵set of S.
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Cech(S, r) = N ({B(s, r)}s2S) '
[

s2S
B(s, r) = N(S, r).

It turns out that the conclusion of the nerve theorem behaves con-

sistently12 with the maps, which results in the following fact: if for 12 The formal term corresponding to
this consistency is “functoriality” and
the relevant extension of the nerve
theorem is referred to as “persistent
nerve theorem” or “functorial nerve
theorem”.

r1 < r2 the inclusion N(S, r1) ,! N(S, r2) is a homotopy equivalence,

then13 so is the inclusion Cech(S, r1) ,! Cech(S, r2).

13 At this point we crucially use the
fact the Euclidean balls always form
a good cover as required by the nerve
theorem.

The Cech filtration thus models the homotopy type of growing o↵-

sets: if on some interval the growth of r results in homotopy equivalent

growth of o↵sets, then it also results in a homotopy equivalent growth

of the Cech complexes.

Interleaving distance for filtrations

We conclude this section by recalling the interleaving distance be-

tween filtrations. The concepts has already been defined in Chapter 5

for Rips and Cech filtrations. With the established general notions we

can use the same definition for filtrations in general.

T Suppose filtrations {Kr}r�0 and
{Lr}r�0 consist of subcomplexes of a
simplicial complex K and let # � 0.
It is easy to see that if for each r we
have Kr  Lr+# and Lr  Kr+#, then
the filtrations are #-interleaved. An
argument of this sort is used in the
proof of Proposition 10.1.3.

Definition 10.1.2. Choose # > 0. Continuous filtrations {Kr}r�0 and

{Lr}r�0 are #-interleaved if there exist simplicial maps jr : Kr !
Lr+# and yr : Lr ! Kr+# such that jr+# �yr : Lr ! Lr+2# and yr+# �
jr : Kr ! Kr+2# are equal to the corresponding inclusions.

· · · // Kr //

jr

!!

Kr+# //

##

Kr+2#
// · · ·

· · · // Lr //

yr

==

Lr+# //

;;

Lr+2#
// · · ·

Given two filtrations their interleaving distance is defined as the

minimum14 of all values # > 0, for which the filtrations are #-interleaved. 14 It is not hard to prove that the
minimum exists due to the addi-
tional requirement imposed on our
filtrations.

It turns out that the interleaving distance is a metric15.

15 In order to maintain this view we
declare two filtrations to be isomor-
phic if they are 0-interleaved. The
interleaving distance is a metric on
the isomorphy classes of filtrations.

In Chapter 5 we proved that Rips and Cech filtrations equipped

with the interleaving distance are continuous (stable) with respect

to perturbations of the underlying points. Generalizing this result

we now prove the sublevel filtrations are continuous with respect to

perturbations of the filtration function in the max metric16.
16 Given two functions f , g : K ! R

defined on all simplices of a finite
simplicial complex K, the max dis-
tance between them is

|| f � g||• = max
s2K

| f (s)� g(s)|.

Proposition 10.1.3. Let K be a simplicial complex. Assume f , g : K !
[0, •) are filtration functions. Then the sublevel filtrations of K cor-

responding to f and g are || f � g||• interleaved.

Proof. In order to align our notation with the diagram above for

# = || f � g||• define Kr = {s 2 K | f (s)  r}  K and Lr = {s 2 K |
g(s)  r}  K. The interleaving maps j, y are defined to be identities

on vertices. The maps are well defined by the following argument:
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• For each vertex v 2 K: if v 2 Kr then v 2 Lr+|| f�g||• by the

definition of the max distance. In a similar fashion, if v 2 Lr then

v 2 Kr+|| f�g||• . Hence maps j, y are well defined on vertices.

• The same argument for simplices17 implies maps j, y are simplicial. 17 For example, if a simplex s 2 K is
contained in Kr, it is also contained
in Lr+|| f�g||• .

10.2 Persistence modules

Persistent homology is obtained by applying homology to a filtra-

tion. In this section we present the properties of the resulting algebraic

objects (persistence modules) which model persistent homology. Just

as filtrations model the growth of simplicial complexes, persistence

modules model the evolution18 of vector spaces19. 18 I.e., not only growth.
19 Which we interpret as holes in the
context of persistent homology

For the rest of this chapter we fix a field F, which will provide

coe�cients to all mentioned vector spaces, including homology groups.

Persistence modules

T In general literature persistence
modules may consist of infinite
dimensional vector spaces.

Definition 10.2.1. A persistence module is a collection of (finite

dimensional) vector spaces {Vr}r�0 along with linear maps

hr,q : Vr ! Vq, 8r  q

satisfying hr,q = hr,s � hs,q and hr,r = idVr for all r  q  s.
Scale r � 0 is said to be regular if there exists # > 0 such that

maps hp,q are isomorphisms for all p, q 2 (r � #, r + #) or (in the

case r = 0) for all p, q 2 [0, #), i.e., the maps h are isomorphisms

close to r. Scale r is critical if it is not regular.
T Critical scales of a continuous
filtration are a supset of critical
scales of its persistent homology as
any change in homology requires a
change of the underlying complex,
but not vice versa.

Our interest in persistence modules stems from the fact that they

are the underlying algebraic structure of persistent homology of con-

tinuous filtrations. In order to simplify our treatment we thus restrict

to persistence modules that appear as persistent homology of continu-

ous filtrations as defined above. In particular, each persistence module

treated here will be assumed to have the following properties: T Properties 2. and 3. imply [0, •)
can be decomposed into finitely many
intervals of the form [⇤1, ⇤2) on
which all maps h are isomorphisms.

1. There exists R > 0 such that for each R  r < q maps hr,q are

isomorphisms20, i.e., eventually all maps h are isomorphisms. 20 An analogous property holds for
continuous filtrations as they filter a
finite simplicial complex, i.e., given
a filtration function f , all sublevel
complexes Kr for r > max | f | coincide.

2. For each r > 0 there exists r0 > r such that for all q 2 [r, r0) the

maps hr,q are isomorphisms21.

21 This corresponds to the analogous
property assumed for our continuous
filtrations.

3. There exist finitely22 many critical scales.

22 This property corresponds to the
fact that continuous filtrations filter
a finite simplicial complex.
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Definition 10.2.2. Persistence modules {Vr}r�0 and {Wr}r�0 are iso-

morphic if for each r � 0 there exist isomorphisms Vr !Wr such

that for each 0  r1 < r2 < . . . the following diagram commutes

· · · // Vrj
//

⇠=
✏✏

Vrj+1
//

⇠=
✏✏

Vrj+2
//

⇠=
✏✏

· · ·

· · · // Wrj
// Wrj+1

// Wrj+2
// · · ·

Decomposition

It is often advantageous to decompose23 mathematical objects 23 Functions are decomposed into
monomials (Taylor series) or trigono-
metric functions (Fourier series).
Closed connected surfaces other
than the sphere can be decomposed
as a direct sum of tori or projec-
tive planes. Every n-dimensional
vector space is of a form Fn and in
one of the previous appendices we
mentioned how finitely generated
Abelian groups can be decomposed
into smallest indecomposable groups:
groups of the form Zp and Z.

into simple pieces and thus obtain a canonical form. In the previous

chapter we decomposed persistent homology into pieces represented

by bars. In this subsection we will formalize such a decomposition for

persistence modules.

We first explain what we mean by a “decomposition”.

Definition 10.2.3. The direct sum of persistence modules {Vr}r�0

and {V0r }r�0 along with respective linear maps hr,q and h0r,q, is a per-

sistence module consisting of:

• spaces Wr = Vr �V0r and

• maps h̃r,q = (hr,q, h0r,q)

for all 0  r < q.

We next present interval modules, which are the pieces represented

by bars.

Definition 10.2.4. Let 0  p < q. An interval module Fp,q cor-

responding to the pair (p, q) is a persistence module {Vr}r�0 defined

as follows:

• Vr = F for r 2 [p, q) and Vr = 0 else.

• Maps hs,s0 are isomorphisms whenever possible.

T Rewriting the condition on maps
in Definition 10.2.4:

• for p  s  s0 < q map hs,s0 is the
identity on F.

• else hs,s0 is the zero map.

T It is easy to verify that interval
modules Fp,q and Fp0 ,q0 are isomor-
phic i↵ p = p0 and q = q0.Theorem 10.2.5. [Structure theorem for persistent homology] Each

persistence module is isomorphic to a direct sum of interval modules.

The decomposition is unique up to the permutation of the intervals.



persistent homology: stability theorem 143

Barcodes and bars introduced in the previous chapter correspond to

this decomposition and interval modules. Theorem 10.2.5 is an alge-

braic expression of the existence of barcodes. It states that the persis-

tence module can be decomposed into the intervals and is completely

determined24 by the interval modules of its decomposition. 24 And as a result, barcodes and
persistence diagrams are complete
descriptions of persistence modules.

Interleaving distance for persistence modules

The interleaving distance has already been defined for filtrations.

Conceptually the same definition applies to persistence modules.

Definition 10.2.6. Choose # > 0. Persistence modules {Vr}r�0 and

{Wr}r�0 along with their respective linear maps hr,q and h0r,q are #-

interleaved if there exist linear maps jr : Vr !Wr+# and yr : Wr !
Vr+# such that jr+# � yr : Wr ! Wr+2# and yr+# � jr : Vr ! Vr+2#

are equal h0r,r+# and hr,r+# correspondingly.

Given two persistence modules their interleaving distance dI is

defined as the minimum of all values # > 0, for which the filtrations

are #-interleaved.

· · · // Vr //

jr

""

Vr+# //

##

Vr+2#
// · · ·

· · · // Wr //

yr

<<

Wr+# //

;;

Wr+2#
// · · ·

It is not hard to prove that the minimum in the definition of the

interleaving distance exists due to the additional requirement imposed

on persistence modules. It is easy to verify that the interleaving dis-

tance is a metric on the isometry classes of persistence modules. As

such the interleaving distance is the metric25 of choice on persistent 25 At this point it should be clear
that continuity and small perturba-
tions of persistent homology depend
on the ability to perform continuous
and small steps in the index set.
An interleaving distance defined on
persistent homology of discrete filtra-
tions or a single complex would have
been, in the best of cases, restricted
to the integer values, that do not
accommodate the idea of continuity.

homologies.

The functoriality of homology implies that #-interleaved filtrations26

26 We have already discussed how
these appear by perturbing points
when using Rips or Cech complexes,
and by perturbing the filtration
function when using the sublevel
filtration.

induce #-interleaved persistence modules. Another setting in which

#-interleaved persistence modules (but not necessarily #-interleaved

filtrations) are obtained is that of spaces, which are “close” to each

other. Let us first define closeness.

Definition 10.2.7. Let (X, d) be a metric space and assume A, B ⇢
X are finite subsets. The Hausdor↵ distance dH(A, B) is defined

as

dH(A, B) = max
�

max
b2B

min
a2A

d(a, b), max
a2A

min
b2B

d(a, b)
 

.

The Hausdor↵ distance is a metric on all finite subspaces of a met-

ric space X. It has a natural geometric meaning. Given the setting of

Definition 10.2.7 find:
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• The minimal rA such that N(A, rA) � B, i.e., the rA-neighborhood

of A contains B.

• The minimal rB such that N(B, rB) � A.

We conclude that dH(A, B) = min{rA, rB}. Note that for each a 2
A there exists b 2 B such that d(a, b)  dH(a, b), and vice versa.

An example is given in Figure 10.5, where a black set A and a red

set B are displayed on top, while their respective neighborhoods are

displayed in the middle and on the bottom.

N(A, rA)

N(B, rB)

BA

Figure 10.5: dH(A, B) = rB > rA.

Hausdor↵ distance measures the distances between finite subspaces

of a metric space and heavily depends on a way in which these sub-

spaces are embedded. For example, di↵erent isometric subspaces will

be at a positive Hausdor↵ distance.

Similar to Hausdor↵ distance is the Gromov-Hausdor↵ distance.

Definition 10.2.8. Suppose A, B are finite metric spaces. The Gromov-

Hausdor↵ distance dGH(A, B) is defined as

dGH(A, B) = inf
µ,n

{dH(µ(A), n(B))},

where the infimum is over all isometric embeddings µ : A! X and

n : B! X into a metric space X.

T Observe that dGH(A, B)  dH(A, B)
for finite subspaces of a metric space
X. As a result Proposition 10.2.9
also holds for dH. However, Gromov-
Hausdor↵ distance is typically harder
to compute and thus it is occasion-
ally more convenient to use dH as
the easily computable parameter of
interleaving.

It turns out that the infimum in Definition 10.2.8 is always attained

and that dGH is a metric on the isometry classes27 of finite metric

27 In particular, dGH(A, B) = 0 i↵ the
spaces are isometric.

spaces.

Proposition 10.2.9. Let A, B be finite metric spaces with # = dGH(A, B).

Then for each q 2 {0, 1, . . .}:

1. {Hq(Rips(A, r))}r�0 and {Hq(Rips(B, r))}r�0 are 2#-interleaved.

2. {Hq(Cech(A, r))}r�0 and {Hq(Cech(B, r))}r�0 are #-interleaved.

Proof. We will only sketch the proof for q = 1 and Rips filtrations.

The proof of other cases follows the same idea but requires some tech-

nical diligence. Without loss of generality we may assume A and B are

subspaces of a metric space X and # = dH(A, B).
We aim to define maps j and y that constitute a commutative

diagram:

· · · // H1(Rips(A, r)) //

jr

))

H1(Rips(A, r + 2#)) //

))

H1(Rips(A, r + 4#)) // · · ·

· · · // H1(Rips(B, r)) //

yr

55

H1(Rips(B, r + 2#)) //

55

H1(Rips(B, r + 4#)) // · · ·
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We first define maps on the vertices of the Rips complexes:

• For each a 2 A choose ba 2 B such that d(a, ba)  # and define

jr(a) = ba, 8r.

• For each b 2 B choose ab 2 A such that d(b, ab)  # and define28 28 As defined, maps jr and yr do not
define an interleaving between the
Rips filtrations as in general aba 6= a.

yr(b) = ab, 8r.

Given a 1-cycle a = Âihai, ai+1i in Rips(A, r) define jr([a]) =

[Âihbai , bai+1i]. This gives well defined maps jr (and also yr) by the

following arguments:

• Âihbai , bai+1i is a cycle in Rips(B, r + 2#) as d(ai, ai+1)  r implies

d(bai , bai+1)  r + 2#.

• If [Âihai, ai+1i] = [Âiha0i, a0i+1i] holds29, then j([Âihai, ai+1i]) = 29 This means Âihai , ai+1i �
Âiha0i , a0i+1i = ∂ Âjhxj, yj, zji.j([Âiha0i, a0i+1i]) as well30.
30 This holds as Âihbai , bai+1 i �
Âihba0i

, ba0i+1
i = ∂ Âjhbxj , byj , bzj i

and hbxj , byj , bzj i are triangles in

Rips(B, r + 2#).

At last we need to show that

h
Â

i
hai, ai+1i

i
=
h
Â

i
ha00i , a00i+1i

i

in H1(Rips(A, r + 4#)) where a00i = abai
. First note that d(ai, a00i ) 

2#, 8i. The di↵erence Âihai, ai+1i � Âiha00i , a00i+1i is a boundary as

demonstrated by the blue 2-chain in Figure 10.6. ai

ai+1ai�1

a00i

a00i+1

a00i�1

Figure 10.6: An excerpt from the
proof of Proposition 10.2.9. Each
edge connects points at distance at
most r + 2#.

10.3 Bottleneck distance and stability theorem

The many versions of the stability theorem for persistent homology

state that persistent homology is continuous with respect to continu-

ous change of the input parameters31. We have already seen examples 31 With various versions discussing
various forms of input.of this sort: through Propositions 10.2.9 and 10.1.3 we can conclude

that persistent homology behaves “continuously” in the interleaving

distance. One of the main advantages of persistent homology is its

visualization and so the final step towards a geometrically convenient

form of the stability theorem is to interpret32 the interleaving dis- 32 A brief idea about a transition
from the interleaving distance to the
bottleneck distance is provided in
appendix.

tance in geometric terms as a distance on persistence diagrams33. The

33 For this setting, the visualization
with persistence diagrams is much
preferred to the visualization with
the barcodes.

resulting distance on persistence diagrams is called the bottleneck

distance.

Bottleneck distance

We start by explaining notions and setting needed to define the bot-

tleneck distance. Suppose A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn)

are persistence diagrams, i.e.:
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• each ai and bi is a point above the diagonal in the first quadrant in

the plane, and

• each point may appear multiple times in any of the diagrams.

For a point v = (x, y) 2 R2 let34 v̄ = ((x + y)/2, (x + y)/2) 2 R2. 34 v̄ represents the point on the
diagonal D = {(z, z) | z 2 R} which is
the closest to v in d• (and also in d2)
metric.

A partial matching between A and B is a bijective map j : A0 ! B0
where35 A0 ✓ A and B0 ✓ B. The matching distance of such a j is

35 Again, a point can appear in A0 or
B0 multiple times but not more times
than in A or B respectively.

defined as

T Recall that the max distance
d•((x1, y1), (x2, y2)) between points in
the plane is defined as

max{|x1 � x2|, |y1 � y2|}.

dM(j) = max
n

max
v2A0

{d•(v, j(v))}, max
v2A\A0

{d•(v, v̄)}, max
v2B\B0

{d•(v, v̄)}
o

.

Let µ(A,B) denote the collection of all partial matchings between A
and B.

Definition 10.3.1. The bottleneck distance between persistence di-

agrams A and B is the minimal matching distance between them, i.e.,

dB(A,B) = min
j2µ(A,B)

dM(j).

Figure 10.7: Examples of partial
matchings between the red and the
blue persistence diagrams with points
unmatched by j being matched to
the closest diagonal point.

Examples of partial matchings are given in Figure 10.7. In order

to demonstrate the additional pairs used in the definition of the bot-

tleneck distance, the unmatched points are connected to the closest

point on the diagonal. The matching with the smallest matching dis-

tance is the second from the left, a fact that can be verified in Figure

10.8, which illustrates the matching distances for matchings of three

diagrams of Figure 10.7. The d•(a, b) distance between points a and

b can be thought to represent one half of the side-length of the square

centered at a which has b on its boundary. The maximal length of

such sides is the smallest in the second case and the resulting quantity

is the bottleneck distance dB.

T At this point it should become
apparent why it is geometrically
convenient to consider points on
the diagonal represent the trivial
persistence module. A side e↵ect of
this approach is that any two points
on the diagonal represent the same
trivial persistence module. In a way,
the entire diagonal should thus be
treated as a single point.
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dB

Figure 10.8: The distances between
the matched pairs are demonstrated
by the squares arising as the balls
of the d• metric. The diagram
with the smallest maximal square
amongst all matchings (even the ones
not displayed here) is the middle
one. Hence the resulting bottleneck
distance dB arises from the middle
diagram.

Theorem 10.3.2 (Isometry theorem). The interleaving distance be-

tween persistence modules equals the bottleneck distance between the

corresponding persistence diagrams.

2" "

Figure 10.9: A schematic represen-
tation of the #-neighborhood of the
diagram consisting of blue points as
discusses in Example 10.3.3.

Example 10.3.3. Let A be the persistence diagram presented by the

four blue points in Figure 10.9. If persistence diagram B satisfies

dB(A,B)  #, then B consists of the following:

• For each blue point there exists one designated36 red point within

36 If some of the squares had non-
empty intersection, then within that
intersection there might be more
points of B, so a single square might
contain more red points. However,
one of them, potentially a diagonal
point, has to be the designated one,
i.e., the point to which the blue point
in question is matched in an optimal
matching.

the grey square (i.e., the #-ball in d•) around it.

• Arbitrarily many points within the grey #-band37 along the diagonal.

37 This band is actually the #-
neighborhood of the trivial (empty)
persistence diagram. Again, this
implies that the squares intersecting
the band may contain more points.

Stability theorem

T The stated version combines sev-
eral separate version of the stability
theorem found throughout the lit-
erature by stating several di↵erent
initial assumptions.

T While the presented results explain
stability in terms of the bottleneck
distance, there is another family of
distances on persistence diagrams
called the Wasserstein distances.
For example, the 1-Wasserstein
distance is obtained by defining the
matching distance as the sum (rather
than max) of individual terms.
Under appropriate assumptions the
persistence diagrams are also stable
when using Wasserstein distances.

Theorem 10.3.4. [Stability theorem] Assume persistence diagrams A
and B represent persistent homologies of filtrations V and W obtained

by one of the following procedures:

1. As the sublevel filtrations of filtration functions f and g satisfy-

ing condition || f � g||•  #, see Proposition 10.1.3.

2. As the Rips filtrations of metric spaces X and Y satisfying con-

dition dGH(X, Y)  #/2, see 1. of Proposition 10.2.9.

3. As the Cech filtrations of metric spaces X and Y satisfying con-

dition dGH(X, Y)  #, see 2. of Proposition 10.2.9.

Then dB(A,B)  #.

Figure 10.10 is a schematic representation of the discussion leading

to the stability theorem as presented here.

The moral of the theorem is that small perturbations of the input

lead to small changes in persistence diagrams. On the other hand,

critical simplices and homology representatives may be unstable.
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"� interleaving of

V and W
filtrations

"� interleaving of

modules

persistence dB(A,B)  "functoriality isometry

theorem

Filtration

functions

||f � g||1  "

Rips

filtration

dGH(X,Y )  "/2

Cech

filtration

dGH(X,Y )  "

Figure 10.10: The diagram sum-
marizing the stability theorem and
strategy of its proof that have been
discussed.

10.4 Interpretations and examples

With the stability theorem, persistent homology may be thought

of as a stable description of a geometric shape. Stability itself justifies

the following observations:

• Given a geometric shape, ever better approximating point-clouds

induce persistent diagrams ever closer38 (converging) the the persis- 38 Given a closed manifold X, a
su�ciently small scale r, and a point-
cloud S su�ciently close to X in dGH ,
the corresponding Rips and Čech
complexes are homotopy equivalent
to X. As a result, the persistent
homology around scale r of a good
approximation reveals homology of
X.

tence diagram of the shape.

• The points of higher persistence (i.e., the longer bars in the bar-

code) represent more stable39 features and are thus typically

39 I.e., they remain non-trivial under
larger perturbations.

deemed to be of higher importance, leading to simplification schemes

on data, such as denoising.

In this section we will present several examples40 of persistent ho-
40 Generated by Ripserer.jl, with
coe�cients in Z2.

mology arising via Rips complexes and comment on their structure.

1-dimensional persistence of geodesic spaces

Let X be a closed41 geodesic manifold or, more generally, the body 41 This implies it admits a finite
triangulation.of a finite simplicial complex equipped with a geodesic metric. Assume

Sn is a sequence42 of finite metric spaces converging towards X in the 42 Such a sequence may be, roughly
speaking, obtained by constructing
ever finer finite approximations of X
and inducing an approximation of a
geodesic metric on them.

Gromov-Hausdor↵ metric. Let An denote the 1-dimensional persis-

tence diagram obtained from Sn via Rips filtration and coe�cients in

F. It turns out that the limiting diagram43 A = limn!• An encodes
43 A can be obtained as persistence
diagram of the Rips filtration of X, a
construction which involves infinite
simplicial complexes and is formally
beyond the scope of this book.

a shortest base of H1(X; F): for each member44 a of a shortest ho-

44 Members are formally cycles whose
length in this case is the length of
the corresponding loop in X. One
can choose a triangulation for which
these simplicial loops are the shortest
possible.

mology base of X we obtain a bar [0, |a|/3), where |a| is the length

of a, see Figure 10.11. Without going through all the details let us

demonstrate the situation through examples.
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Figures 10.12 and 10.13 represent three surfaces in R3 approxi-

mated by a finite collection of points. An approximation of a geodesic

metric is induced on the points and used to compute 1-dimensional

persistent homology. The right part of the figures represents the

longest one or two bars obtained from each of the computations.

Starting with a discrete set of points, a multitude of short bars is

also generated, but are the artefact of a finite approximation rather

than topologically significant features. By the stability theorem their

lifespans decrease (although their numbers increase) as we improve the

approximation density.

Let us interpret the results:
↵

�

|↵|/3 |�|/3
Figure 10.11: The 1-dimensional
persistent homology of a torus
detects its shortest homology basis.

1. Our chosen samples are dense enough for the longest bars to de-

tect the shortest 1-dimensional homology bases, which in this case

coincide for all coe�cients.

2. The bars would ideally be born at 0 and run until45 one-third of 45 Žiga Virk. 1-dimensional intrin-
sic persistence of geodesic spaces.
Journal of Topology and Analy-
sis, 12(01):169–207, 2020. doi:
10.1142/S1793525319500444

the lengths of the corresponding homology generators. With in-

creased density the resulting barcode would approach this scenario.

3. The visualizations of approximating points also contain a loop or

two: these are obtained by connecting the vertices of the critical

triangles by the shortest paths through our points. For bars corre-

sponding to the basis, this gives an approximation of the shortest

homology basis. In the spirit of the stability theorem, the finer the

approximation by points, the closer approximation of the loops we

obtain.

Figure 10.12: The longest bar of
1-dimensional persistent homology.

4. Going beyond the basis, we see that the next bar in Figure 10.13

detected a hole in our approximating points. The lifespan of this

bar would decrease towards zero with ever better approximations.

http://dx.doi.org/10.1142/S1793525319500444
http://dx.doi.org/10.1142/S1793525319500444
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Figure 10.13: The longest two bars of
1-dimensional persistent homology.

Stability demonstrated

Figure 10.14 contains four approximations of a circle by discrete

sets and the corresponding persistence diagrams arising from the Rips

filtration. The stability theorem states that the induced persistence

diagrams should be close to each other, and the figure demonstrates

this is indeed the case.

A few comments on the diagrams:

1. There is a point (0, 3) representing (0, •) indicating the one persis-

tent component.

2. The main dominating feature is the very persistent point termi-

nating at around 1.5. It represents the 1-dimensional hole, i.e.,

the homology of S1. Its precise coordinates tell us more about the

geometry of the sample.

• The birth is between 0 and .5. The precise birth depends on

the edges of the Rips complex going “around the circle”46. The 46 ...and thus generating the 1-cycle.

maximal gap needed for such circumcision is the birth time.

We can see that such a gap is smallest in the upper-right case

resulting in early birth. On the other hand, the gap is largest in

the upper-left case47 and results in a later birth. 47 The gap of this sample appears in
the upper-right part

• The terminal scale of this feature is the minimal diameter of an

“almost equilateral triangle” reaching “around the circle”.

3. The other points on persistence diagrams are of low persistence and

appear48 as an artefact of discretization. 48 For example, as the Rips complex
on n points is a discrete collection of
n points at small scales, each such
diagram will have n many points
indicating persistent 0-dimensional
homology.
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Figure 10.14: Four approximations
of a circle and the corresponding
persistence diagrams.Spheres

We next present examples approximating spheres. In Figure 10.15

we present persistence diagrams via Rips complexes of a sample of 100
points on unit spheres: S2 (on left) and S3 (on right); using Euclidean

(top) or geodesic distance (bottom).

4

3 S3(1)

5

Figure 10.15: Persistence diagrams
via Rips complexes of samples of one
hundred points sampled from unit
S2 (on left) and S3 (on right) using
Euclidean or intrinsic (geodesic)
distance.

T In persistence diagrams in Fig-
ure 10.15 there are a lot of short
bars. Some of these are artefacts
of discretization, other indicate a
more complex structure of persistent
homology reaching beyond the in-
terpretation of the size of homology
representatives of the underlying
space. Interpreting such bars is a
very active research topic.

As the only non-trivial homology (except for dimension 0) of S2 is

H2(S2; F) ⇠= F, we expect a long persistent line in that dimension,

which is indeed the case. In fact, the long 2-dimensional bar clearly

indicates that in both cases the most prominent homology is of rank 1
in dimension 2. The same holds for S3 although a denser sample would
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have made the same observation easier in the geodesic case.

To demonstrate the improvement induced by larger density we

present in Figure 10.17 a sequence of diagrams with increasing density.

The underlying space is a cut-o↵ unit sphere, i.e., a 2-dimensional

sphere with a cap above the parallel of circumference approximately

1.5 removed, see Figure 10.16. We take a sample of 100, 200, and 400
points, generate a geodesic distance, and generate persistence diagrams

via Rips filtrations.

FOOTPRINTS OF GEODESICS IN PERSISTENT HOMOLOGY 25

Figure 9. PD described in Section 9.

(3) Note that the long 2-dimensional bar above is born slightly earlier than
the 3-dimensional bar. This is always the case, as generating the two-
dimensional bar only requires a 2-dimensional portion of the generator of
the 3-dimensional bar, that spans the sample of �.

(4) A pairing of a 3-dimensional bar with 2-dimensional bar indicates that � is
contractible in X.

(5) We speculate the other short 3-dimensional bars are induced by other ge-
odesic circles (i.e., equator and its rotations) in X. We will delve deeper
into them in our future work.

Note that, except for small values of r, there is essentially no noise in the PD.
We are able to interpret almost all of the bars. Initial 1-dimensional bars are
unavoidable as we always start with a finite sample (discrete subset). They shorten
as the density of our sample increases. The only other unmentioned bar is the short
2-dimensional bar appearing at about the same time as the long 2-dimensional
bar. It can be explained by the e↵ect of discretisation and the structure of the
3-dimensional bar born at about the same time.

During our experimentation we have generated several instances of the PD using
the mentioned procedure. The obtained diagrams are qualitatively the same in all
instances (and aligned with the interpretation above) with the only exception being
the short isolated 3-dimensional bar, which did not appear in all attempts due to
its short length.
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Figure 10.16: A cut-o↵ sphere as an
underlying space leading to diagrams
in Figure 10.17.

Here is what we would expect from resulting persistence diagrams:

1. The cut-o↵ sphere is contractible for small scales and thus initial

clutter of 1-dimensional bars should be decreasing in size as we

increase density.

2. At a certain scale an o↵set of the cut-o↵ sphere will fill in the top

and create a void and hence49 a 2-dimensional homology in the 49 See Example 10.1.1.

Cech complex. As Rips complexes are interleaved with Cech com-

plexes50, we might hope that the same 2-dimensional bar might 50 ...and hence the persistence dia-
grams are not too di↵erent.appear in our case. That is indeed the case and the mentioned long

bar grows with increasing density of the sample.

3. As is frequently the case, there appear multitudes of short bars we

choose to ignore at this point.

Figure 10.17: Four persistence dia-
grams via Rips complexes of a cut-o↵
sphere, based on samples of 100, 200,
and 400 points.De-noising a function

Suppose we are given an approximation of a function f in the form

of a discrete set of equally spaced measurements. We can connect

the resulting points by edges and obtain a graph G representing our

measurements, see the left side of Figure 10.18. Suppose we want

to extract the global behaviour of f as in the center of Figure 10.18

by removing the local oscillations we consider to be noise. A way

to achieve it would be to construct the sublevel51 filtration of the 51 A vertex of G appears at the
function value it represents. An edge
of G appears as soon as both of its
vertices appear.

simplicial complex G and choose the threshold # for the noise level.

We would then draw the corresponding 0-dimensional persistence

diagram and ignore the points in the shaded #-neighborhood52 of the 52 Each local minimum in our ap-
proximation except for • and ⇤
generates a point in this neighbor-
hood.

diagonal, see the right side of Figure 10.18. As a result we obtain
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two prominent points •,⇤ in the persistence diagram. The de-noised

function presented in the center of Figure 10.18 can now be obtained

by connecting the critical simplices corresponding to these points:

T By adjusting the threshold # we
can adjust the level of details we
want to preserve.

1. Blue birth simplices get connected to the higher endpoint of the red

terminal simplex.

2. The only exception is ⇤, which is not a terminal simplex, but gets

added as the highest point in the graph in order to finalize53 our 53 The component represented by ⇤
can not get terminated as a homol-
ogy element.

approximation by connecting it to ⇤.

1

Figure 10.18: A noisy function, its
reconstruction and the corresponding
persistence diagram. The shaded
region contains a multitude of points
we choose to ignore in our recon-
struction.

10.5 Concluding remarks

Recap (highlights) of this chapter

• continuous filtrations;

• persistence modules;

• interleaving;

• Stability theorem;

Background and applications

There are three di↵erent proofs of the stability theorem in the

literature. The initial proof was combinatorial54 and did not include

54 David Cohen-Steiner, Herbert
Edelsbrunner, and John Harer.
Stability of persistence diagrams.
Discrete & Computational Geom-
etry, 37(1):103–120, 2007. doi:
10.1007/s00454-006-1276-5

the isometry theorem or interleavings but rather just the continuity of

persistence diagrams. It motivated a more algebraically oriented proof

using interleavings55. The third and most direct proof uses explicit

55 Frédéric Chazal, David Cohen-
Steiner, Marc Glisse, Leonidas J.
Guibas, and Steve Y. Oudot. Prox-
imity of persistence modules and
their diagrams. In Proceedings of
the Twenty-Fifth Annual Sympo-
sium on Computational Geome-
try, SCG ’09, pages 237–246, New
York, NY, USA, 2009. ACM. doi:
10.1145/1542362.1542407

matching56.

56 Ulrich Bauer and Michael Lesnick.
Induced matchings of barcodes and
the algebraic stability of persistence.
In Proceedings of the Thirtieth An-
nual Symposium on Computational
Geometry, SOCG’14, pages 355–364,
New York, NY, USA, 2014. ACM.
doi: 10.1145/2582112.2582168

The existence of a decomposition of a persistence module into in-

decomposable parts is a particular case of a standard approach re-

ferred to as the Krull Remak Schmidt principle. The fact that the

indecomposable are precisely the interval modules is a special case

of the Gabriel’s theorem. The fact that the indecomposable parts of

http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1145/1542362.1542407
http://dx.doi.org/10.1145/1542362.1542407
http://dx.doi.org/10.1145/2582112.2582168
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multi-parameter persistent homology are not as simple as the interval

modules is the major obstacle to exhaustive applications of multi-

parameter persistence.

For a longer treatment of stability see a book57. There is also a 57 Frédéric Chazal, Vin de Silva,
Marc Glisse, and Steve Y. Oudot.
The Structure and Stability of
Persistence Modules. Springer Briefs
in Mathematics. Springer, 2016. doi:
10.1007/978-3-319-42545-0

recent treatment simplifying some of these ideas58.

58 Primož Škraba and Katharine
Turner. Notes on an elementary
proof for the stability of persistence
diagrams, arXiv: 2103.10723, 2021

The material presented up to this point represents the core ideas

and properties of persistent homology. From this point on the topics

diverge, with some of the major motivations being:

• Theoretical treatment: persistent homology represents a param-

eterized version of homology and as such there are many ways to

explore the structure further, either by generalizing the frame-

work59, determining what geometrical properties it encodes60 and 59 For example, with zig-zag persis-
tence, multi-parameter persistence,
introduction of new constructions of
complexes (Witness, selective Rips
complex), etc.
60 For example it encodes, at least
to some degree, shortest homology
bases, intrinsic volumes, geometric
shapes, curvatures, dimension, etc.

expanding the ideas into other theoretical contexts.

• Practical treatment, mostly associated with data analysis: in this

context persistent homology is often viewed as a stable shape de-

scriptor. As a result considerable e↵ort is being invested to incor-

porate persistent homology into the flow of data analysis, either by

adjusting it to specific data types61, establishing meaningful proba- 61 Besides point-clouds, these include
time series, high-dimensional data,
dynamical systems, sensor networks,
etc.

bilistic62 and statistical63 analysis, and to extract relevant features.

62 It turns out there are significant
phase transitions in persistent homol-
ogy of random processes, etc.
63 This is typically done by mapping
persistence diagrams into Hilbert
space via any of the multitude maps
available, for example persistence
landscapes, persistence silhouette,
persistence silhouette, persistence
images, etc.

• Computational treatment: the aim of this context is to optimize the

computational resources required to obtain persistence (or at least a

part of it) by developing faster algorithms often incorporating vari-

ous shortcuts (for example, the twist64.) or additional structure65.

64 Chao Chen and Michael Kerber.
Persistent homology computation
with a twist. In Proceedings 27th Eu-
ropean Workshop on Computational
Geometry, volume 11, pages 197–200,
2011
65 For example, when computing one-
dimensional persistence of geodesic
spaces.

Currently available software for computing persistent homology

includes (but is not restricted to) Ripser and related Ripserer.jl,

Ripser.py, and Cubical Ripser, Dionysus, PHAT, GUDHI, javaPlex,

Perseus, Eirene, etc.

This list of topics and software is by no means exhaustive.

Appendix: From the interleaving distance to the bottleneck distance

In this appendix we will provide an explanation that leads to the

bottleneck distance by determining the interleaving distance between

pairs of interval modules.

Case 1: distance between an interval module and the zero persis-

tence module. The situation is presented in Figures 10.19 and 10.20.

For 0  p < q let us discuss the interleaving of the interval mod-

ule Fp,q (the bold portion of the figures) and the trivial persistence

module (the grey portion below).

p q

"

Figure 10.19: interval module Fp,q
is not #-interleaved with the trivial
interval if # < (q� p)/2.

p q

Figure 10.20: interval module Fp,q is
#-interleaved with the trivial interval
if # � (q� p)/2.

http://dx.doi.org/10.1007/978-3-319-42545-0
http://dx.doi.org/10.1007/978-3-319-42545-0
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• If the interleaving parameter was # < (q� p)/2 as in Figure 10.19,

the composition of the red diagonal maps:

– is the trivial map as it factors through the trivial vector space

below;

– should have been identity on F by the interleaving condition, as

its domain and target are in [p, q).

These two observations contradict each other hence the interleaving

parameter is at least (q� p)/2.

• For # = (p � q)/2 though, the composition of the diagonal maps

increases the scale parameter by p� q, and any such structure map

of Fp,q is trivial, hence the #-interleaving consisting of trivial maps

exists, see Figure 10.20.

We conclude that the interleaving distance is # = (p� q)/2.

p q

"

Figure 10.21: #-interleaving implies
the orange part is non-trivial as the
interleaving maps in the blue region
have to be non-trivial.

p q

p q

p0 q0

p0 q0

Figure 10.22: Condition of Figure
10.21 induces two shapes. The
interleaving distance is the larger #
parameter these shapes induce.

Case 2: general case. From Case 1 we conclude that for 0 
p0 < q0 the following holds: If Fp,q is #-interleaved with Fp0 ,q0 for

# < (p � q)/2, then [p0, q0) � [p + #, q � #) see Figure 10.21. By

symmetry the opposite also holds: [p, q) � [p0 + #, q0 � #). It is easy

to see these conditions are also su�cient. For minimal # for which

these two conditions hold we obtain the #-interleaving by mapping

the designated generator of Fp,q to the designated generator of Fp0 ,q0

whenever possible, with other maps being trivial, see Figure 10.23.

It should be apparent from Figure 10.22 that the # in question is

max{|p� q|, |p0 � q0|}.

p q

p0 q0"

Figure 10.23: The interleaving for
# = max{|p � q|, |p0 � q0|}. The
non-trivial maps are in the shaded
region.We conclude that Fp,q and Fp0 ,q0 are max{|p� q|, |p0 � q0|} inter-

leaved. However, Case 1 demonstrates that Fp,q and Fp0 ,q0 are also

max{(p� q)/2, (p0 � q0)/2}-interleaved by the trivial maps, the inter-

leaving distance between Fp,q and Fp0 ,q0 is

min{max{|p� q|, |p0 � q0|}, max{(p� q)/2, (p0 � q0)/2}}.

We now interpret the obtained distanced in the context of persis-

tence diagrams representing interval modules. First note that

(p� q)/2 = d•

✓
(p, q),

✓
p + q

2
,

p + q
2

◆◆

is the d• distance between (pq) and the diagonal D.

Case 1. The interleaving distance between Fp,q and the zero persis-

tence module is realized by matching point (p, q) to the closest point

on the diagonal and computing the resulting d• distance, see Figure

10.24.

Figure 10.24: Matching a point to D.

Figure 10.25: Matching two points.
Case 2. The distance between Fp,q and Fp0 ,q0 is the smaller of the

following two:
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1. Either max{|p� q|, |p0 � q0|} = d•((p, q), (p0, q0)), which is the d•

distance between the points, see Figure 10.25.

2. Or max{(p� q)/2, (p0 � q0)/2} which can be interpreted as follows:

match each of the points to the closest point on the diagonal D and

take the maximal d• distance, see Figure 10.26.

We have thus interpreted the interleaving distance between interval

modules in the context of persistence modules and obtained the bottle-

neck distance for diagrams containing at most one point. The crucial

ingredients of the interpretation are the matching and d•. Theorem

10.3.2 essentially states that an optimal interleaving between any pair

of persistence modules essentially consists of such matchings: match

some pairs of interval modules from both persistence modules, and

then match the remaining interval modules to D. The interleaving dis-

tance (and thus the bottleneck distance) corresponds to the matching

whose d•-distance of its maximal matching is minimal. Figure 10.26: Matching each of the
two points to D.
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Discrete Morse theory

Homology and persistent homology detect holes in spaces

through the use of algebraic constructions: a simplicial complex gener-

ates a chain complex and the resulting homology construction detects

holes. However, functions and vector fields also contain information

about the topology of the domain. In the smooth setting this infor-

mation is contained in critical points of functions and zeros of vector

fields, a situation which is beautifully described by Morse theory.

In this chapter we will describe discrete Morse theory. As the name

suggests we will delve into the world of discrete functions and discrete

vector fields defined on simplicial complexes. Our main goal will be

to describe how these encode homology, often leading to simplified

representations and faster computations than the standard methods.

11.1 Motivation

We first recall the definition of elementary collapses.

T If s is a free face in a simplicial
complex K then its only coface is a
maximal simplex in K.

Definition 11.1.1. A simplex in a simplicial complex is a free face

if it is a face of precisely one simplex. This implies that the coface

in question is a maximal simplex

Let K be a simplicial complex, sk�1 ⇢ tk 2 K, and assume s is

a free face in K. A removal K ! K \ {s, t} is called an elemen-

tary collapse.

Complex K is collapsible to a subcomplex L  K if there is

a collapse (i.e., a sequence of elementary collapses) resulting in the

subcomplex L. Complex K is collapsible if it is collapsible to a point.

Figure 11.1: An elementary collapse
indicated by an arrow from s into t.

Remark 11.1.2. We have already proved in Lemma 3.4.6 that an el-

ementary collapse results in a homotopically equivalent space. As a

result, if a simplicial complex K is collapsible to a subcomplex L  K
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then L ' K. In particular, each collapsible simplicial complex is con-

tractible. The converse does not hold as there exist contractible sim-

plicial complexes without a free face, for example Dunce hat (Figure

11.2) and Bing’s house. a

a

a

a
Figure 11.2: Dunce hat is obtained
by glueing the boundary of a disc
along a circle: twice alone one di-
rection and once along the other
direction. The obtained space can be
triangulated but contains no free face
meaning it is not collapsible. How-
ever, it turns out to be contractible.

Given a simplicial complex K it would be of interest to simplify (i.e.

collapse) it as much as possible. This would, for example, simplify the

computation of homology groups. One would go about such simplifi-

cation by repeating the following sequence as long as possible: find a

free face and perform the corresponding collapse. An example is given

in Figure 11.3, where the collapses of the first three steps are indicated

by the arrows. One can encode such a collapse by:

• drawing all the arrows1 indicating collapses, or 1 An example of a discrete vector
field.

• annotate simplices by numbers2 so that the countdown-sequence 2 A rough example of a discrete
Morse function.encodes3 the collapsing sequence.
3 10 collapses to 9; 8 collapses to 7,
etc.

Both of these encodings are demonstrated on the right side of Figure

11.3.

10 9

8

76

5

Figure 11.3: A simplification of a
simplicial complex using elementary
collapses and the encoding of the
resulting collapse by arrows (dis-
crete vector field) and annotations
(discrete Morse function).

Eventually a collapsing sequence ends when there are no more free

faces. At this point we can resort to another trick that will on one

hand change the structure of a complex, yet still simplify its descrip-

tion in a way. Choose any simplex, declare it to be a critical simplex,

remove it from the complex, and continue with collapsing. In the end

we will form a “complex” consisting of critical simplices. The details

of the construction will be described throughout this section. At this

point we only illustrate a geometric interpretation of this idea in terms

of “stretching” simplices.

a aa

Figure 11.4: Declaring the red edge
to be critical, we can collapse the
other two edges and obtain a repre-
sentation of a circle using only two
critical “simplices”.For our motivational purposes let us continue in Figure 11.4 with

the example from Figure 11.3. We are left with a triangle. We choose

one of its edges to be a critical edge and continue with collapsing.

We can imagine that each collapse stretches the critical edge until, at

the end, we are left with two critical simplices: and edge and a point

jointly forming a circle. The resulting space is homotopy equivalent to

our original simplicial complex of Figure 11.3, has a simple represen-

tation, but is not a simplicial complex. However, its homology can be
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computed in the same way as simplicial homology so in e↵ect, we have

transformed the 1-dimensional boundary matrix from 6 columns to 1
column. For another example see Figure 11.5.

x

y

z

x

x

z

y

xv w

v w

a

a

b b

a

b

x x

xx

Figure 11.5: Stretching critical
simplices of a standard triangulation
of the torus (on the left) along
the indicated collapses results in a
standard representation of a torus as
a square with identified sides (on the
right).

Critical simplices can be thought
of as zeros of the resulting discrete
vector field. We have already seen in
the hairy ball theorem that there is a
connection between zeros of smooth
vector fields and topology of the
domain.

11.2 Discrete Morse functions and discrete vector fields

We start by defining functions that encode the collapsing sequences

and deformations.

Definition 11.2.1. Let K be an abstract simplicial complex. A func-

tion f : K ! R is a discrete Morse function [DMF] if 8sk 2
K:

1. e1 = |{tk�1 2 K | f (t) � f (s)}|  1 and

2. e2 = |{tk+1 2 K | f (t)  f (s)}|  1.

T An abstract simplicial complex
is a collection of simplices hence a
real function defined on it maps each
simplex into a real number.

A function g : K ! R respects dimension4 if for each sk�1 ⇢ tk 2 K 4 As an example think of g(s) =
dim(s).we have g(s) < g(t). Such a function is a DMF. On the other hand,

each DMF almost respects dimension in the sense5 that for each sim- 5 Putting it di↵erently, for each
simplex the values of the function
strictly decrease by passing to its
faces with at most one exception,
and the values of the function strictly
increases by passing to its cofaces
with at most one exception.

plex tk at most one exceptional facet and at most one exceptional co-

face of dimension k + 1 are allowed. The following proposition demon-

strates that the two exceptions cannot occur simultaneously.

Proposition 11.2.2. Given the notation of Definition 11.2.1, either

e1 = 0 or e2 = 0.

Proof. Aiming for the contradiction, assume that for s 2 K and for

vertices v1, v2 2 K(0) we have

f (s) � f (s [ {v1}) � f (s [ {v1, v2}). (11.1)

But then s [ {v2} 2 K and we have:
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1. f (s [ {v2}) > f (s) as the exceptional coface of s is s [ {v1}.

2. f (s [ {v2}) < f (s [ {v1, v2}) as the exceptional face of s [ {v1, v2}
is s [ {v1}.

These two conclusions combine into f (s) < f (s [ {v1, v2}) which

contradicts equation 11.1.

10 9

8

76

5

4

3

2

13
2

Figure 11.6: An example of a DMF
and the resulting discrete vector field
in blue.

Proposition 11.2.2 implies that simplices with exceptions form dis-

joint pairs. We will refer to such pairs as regular pairs. A regular pair

consists of a simplex t and its facet s. It encodes an “arrow” s ! t

in the sense of the motivational section and is thus presented as such,

see Figure 11.6 for an example. A simplex without any exception6 is
6 I.e., for which e1 = e2 = 0.

called7 critical simplex. Given a DMF on a simplicial complex, each 7 A critical simplex is not contained
in any regular pair.simplex is either critical or contained in a unique regular pair.

Definition 11.2.3. Let K be an abstract simplicial complex. A discrete

vector field is a disjoint collection of pairs (si, ti) of simplices from

K such that for each i simplex si is a facet of ti. Each pair of a dis-

crete vector field is referred to as an arrow.

Proposition 11.2.4. Let f be a
DMF on a simplicial complex
K. For each i let ni denote
the number of critical sim-
plices of dimension i. Then
c = n0 � n1 + n2 � . . . .

Proof. Removing a regular pair
of simplices does not change c
because simplices are of adjacent
dimensions.

The disjointness condition means that each simplex can be the

member of at most one pair of a discrete vector field. The collection of

regular pairs of a DMF forms8 a discrete vector field, see Figure 11.6.

8 The converse is not true in general
as we will explain the the next
subsection.

A discrete vector field is called a gradient vector field9 if it is induced

9 We will be omitting adjective
“discrete” when mentioning gradient
vector fields.

by some DMF in this manner. The arrows constituting a discrete

vector field will be sometimes referred10 to as regular pairs.

10 The reason is twofold: to em-
phasize that the pair is a part of
the structure of a discrete vector
field, and to stress the analogy with
regular pairs of a DMF.

Gradient vector fields

Definition 11.2.5. Let K be a simplicial complex and p 2 N. Given

a discrete vector field on K consisting of pairs {(si, ti)}i2J, a p-path
is a sequence

s
p�1
i1
! t

p
i1
� s

p�1
i2
! t

p
i2
� s

p�1
i3
! · · ·! t

p
ik
� s

p�1
ik+1

such that for each j:

• (s
p�1
ij

, t
p
ij
) is an arrow in the discrete vector field, and

• s
p�1
ij

is a facet of t
p
ij�1

.

Such a p-path is a cycle if s
p�1
1 = s

p�1
k+1 and k � 1.

A discrete vector field is acyclic if it admits no cycle.

A few observations concerning Definition 11.2.5:
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1. A critical simplex can only appear as the last simplex of a p-path

in a discrete vector field.

2. Given a DMF f , function values decrease along any p-path in the

induced discrete vector field, i.e.:

f (sij) � f (tij) > f (sij+1), 8j.

In particular, f (si1) > f (sim) for all m > 1.

3. Observation 2. implies that each gradient vector field is acyclic.

The following theorem proves the converse.
Figure 11.7: A 2-path in blue ending
in a critical edge, a 2-path in red
ending in a non-critical edge, and a
1-path in orange ending in a critical
vertex.

T Di↵erent DMFs on a simplicial
complex K may induce the same
discrete vector field. For example, if
f is a DMF, then so are e f and 3 f �
5, and all of them induce the same
discrete vector field. Our primary
interest in discrete vector fields
lies in their encodings of collapses
and deformations-simplifications
of a simplicial complex. A DMF
represents a convenient but not
unique way of encoding a discrete
vector field.

Theorem 11.2.6. Each acyclic discrete vector field on a simplicial com-

plex K is a gradient vector field, i.e. it is induced by some DMF.

A proof is given in the appendix. As a result we obtain the follow-

ing theorem.

Theorem 11.2.7. A discrete vector field is gradient vector field i↵ it

is acyclic.

We conclude this section by demonstrating how acyclic discrete

vector fields encode collapses.

Proposition 11.2.8. Suppose the critical simplices of an acyclic dis-

crete vector field on K form a subcomplex L  K. Then there exists

a collapse K ! L and thus K ' L.

Corollary 11.2.9. If an acyclic discrete
vector field on K has a single critical
simplex, then that simplex is a vertex
and K is collapsible.

Proof. The statement follows di-
rectly from Proposition 11.2.8.

Proof. We claim there exists a regular pair (s, t) such that s is a free

face. Assuming for a moment this claim is true, we can remove pair

(s, t) by performing an elementary collapse and proceed by using the

claim on the resulting complex. Thus the inductive argument and the

claim su�ce to prove the proposition.

We now turn our attention to proving the claim. Let n denote the

maximal dimension of a simplex in K \ L. There exists an n-path in

the discrete vector field. Take a maximal11 such path and let s ! 11 Such a path contains a first regular
pair because the discrete vector field
is acyclic.

t denote the first regular pair in it. Simplex s is a free face by the

following argument:

• s  t as the simplices form a regular pair.

• If s was a facet of another simplex t0 in K \ L, then the n-simplex

t0 would be contained in another regular pair12 (s0, t0), which could 12 There are no (n + 1)-simplices in
K \ L.be used to prolong our n-path. This contradicts the maximality of

the chosen n-path.
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• If s was a facet of another simplex t0 in L, then s 2 L as L is a

subcomplex, a contradiction.

11.3 Morse homology

In this section we will explain the proceedure that leads to the com-

putation of homology from a gradient vector field. The geometric idea

behind the theory was presented at the beginning of this chapter: col-

lapsing regular pairs to stretch critical simplices, with the resulting

space having the same homotopy type as the original simplicial com-

plex but fewer “simplices”. In our treatment we will refrain13 from 13 A formal definition of resulting
spaces would require a significant
amount of additional material from
algebraic topology. This would
include a formal treatment of CW
complexes, i.e., spaces obtained
by inductively glueing discs. We
have actually mentioned several
presentations of such constructions
when presenting torus, Klein bottle
and projective plane by drawing a
square with identifications along the
edges, when defining the dunce hat,
and in one of the previous appendices
in the context of relative homology.

formally defining the resulting space and instead construct the result-

ing chain complex directly. However, it might still be helpful to keep

the geometric idea in mind to help navigate the algebraic construction.

Morse chain complex

For the rest of this section we fix a simplicial complex K, a gradi-

ent vector field on K, and an (algebraic) field F to provide e�cient

algebraic constructions. For each i let ni denote the number of critical

i-simplices.

Definition 11.3.1. Let p 2 {0, 1, . . .}. A Morse p-chain is a for-

mal sum Â
np
i=1 lis

p
i with li 2 F and s

p
i being an oriented critical sim-

plex of dimension p in K for each i.
The p-dimensional Morse chain group Cp is the vector space con-

sisting of all Morse p-chains.
T As with the usual homology,
multiplying an oriented simplex by
�1 changes its orientation.

Observe that Cp ⇠= Fnp . In order to obtain a chain complex we also

need to define boundary maps. These are based on oriented14 paths in 14 Paths in a discrete vector field are
directed by definition. The adjective
“orientable” refers to the fact that
the simplices forming the path are
oriented in a certain way.

discrete vector fields.

T One could say that the simplices
tij in an oriented p-path are oriented
consistently along the path.

Definition 11.3.2. Let p 2 {0, 1, . . .}. An oriented p-path from an

oriented simplex s
p�1
1 to an oriented simplex s

p�1
k+1 is a p-path

s
p�1
1 ! t

p
1 � s

p�1
2 ! t

p
2 � s

p�1
3 ! · · ·! t

p
k � s

p�1
k+1

consisting of oriented simplices, such that for each j the orientation

induced by tj on its facets:

1. matches sj, and

2. does not match sj+1.
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Given an oriented critical p-simplex t, let d(t) denote the collection

of all of its facets with the induced orientation arising from t. For

each15 oriented critical (p� 1)-simplex s define 15 Given an oriented critical (p� 1)-
simplex s observe that at,s counts
di↵erent paths than at,�s.at,s = Â

s02d(t)

|{ oriented paths from s0 to s}|

as the number of oriented p-paths from elements of d(t) to s.

Definition 11.3.3. The boundary map d of the Morse chain com-

plex is defined as follows: for each oriented critical p-simplex t de-

fine

dpt =
np�1

Â
i=1

(at,si � at,�si )si,

where s1, . . . , snp�1 are critical (p� 1)-simplices with a fixed orien-

tation.

T The oriented paths constituting
the boundary map model how arrows
stretch the boundary of a p-critical
simplex towards critical (p � 1)-
simplices.

Examples will be provided below when demonstrating the compu-

tation of Morse homology, see also Figures 11.8 and 11.9. It turns out

that d
2 = 0.

Definition 11.3.4. The Morse chain complex is the chain complex

defined as

· · · d! Cn
d! Cn�1

d! · · · ∂! C1
d! C0

d! 0.

Morse homology

We may now define Morse homology as the homology arising from

the Morse chain complex.

Definition 11.3.5. Let p 2 {0, 1, . . .}. The Morse homology of a

gradient vector field on K is defined as

Hp(K; F) = ker dp/ Im dp+1.

Theorem 11.3.6. Morse homology is isomorphic to the standard (sim-

plicial) homology:

Hp(K; F) ⇠= Hp(K; F).

Corollary 11.3.7 (Weak Morse inequalities). For each p the number

of critical p simplices is greater or equal to the corresponding Betti

number: np � bp.
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Example 11.3.8. Given the situation of Figure 11.8 there is one critical

edge hb, ei and one critical vertex hai. Thus C1 ⇠= C0 ⇠= F with the

other Morse chain groups being trivial.

Let us determine dhb, ei:

1. d(hb, ei) = {hei,�hbi}.

2. There is one oriented 1-path from hei to hai:

hei ! he, ai � hai.

3. In a similar fashion there is one oriented 1-path from �hbi to
�hai.

4. Observations 2. and 3. imply ahb,ei,hai = 1 and ahb,ei,�hai = 1.

5. dhb, ei = (ahb,ei,hai � ahb,ei,�hai) · hai = 0

The resulting Morse chain complex is of the form

· · ·! 0! F
0! F ! 0.

The resulting homology is trivial in dimensions two and above, and

nontrivial below: H0(K) ⇠= H1(K) ⇠= F.

c

d

b

ae
Figure 11.8: A gradient vector field
on a simplicial complex. Critical
edges are colored in red. There is one
oriented 1-path from hei to hai and
one oriented 1-path from hbi to hai.

Example 11.3.9. Let us compute the Morse homology of a torus.
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Figure 11.9: A triangulation of a
torus, a gradient vector field, and
paths generating the Morse boundary
from Example 11.3.8.

Given the triangulation and the gradient vector field on a torus pre-

sented on the leftmost part of Figure 11.9 we determine the following

critical simplices:

• critical vertex x in purple;

• critical edges a (red) and b (blue);

• critical triangle t.
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We orient the critical simplices according to visualizations in the other

parts in Figure 11.9. The resulting Morse chain complex is of the form

· · ·! 0! F ! F2 ! F ! 0.

We next determine the Morse boundary of t. Only two simplices of

d(t) are the starting simplices of oriented 2-chains ending in a critical

edge:

• From the diagonal edge of d(t) there are two oriented 2-paths16 to 16 Drawn in black on the center-left
part of Figure 11.9.critical edges17 �hai and �hbi.
17 The center-right part of Figure
11.9 contains opaque green arrows
indicating the orientations of the
edges contained in the oriented 2-
paths. The terminal edges of the
oriented 2-paths are �hai and �hbi.

• From the top edge of d(t) there are two oriented 2-paths18 to criti-

18 Drawn in black on the rightmost
part of Figure 11.9.

cal edges19 hai and hbi.

19 The two oriented 2-paths di↵er
only in the last simplex.

• There are oriented 2-paths starting in the vertical edge of d(t) but

none of them ends in a critical edge.

Combining these three cases we conclude

d(t) = �hai � hbi+ hai+ hbi = 0.

In a similar way we conclude that da = db = 0. The resulting Morse

chain complex is of the form

· · ·! 0! F
0! F2 0! F ! 0.

The resulting homology is trivial in dimensions three and above, and

nontrivial below: H0(K) ⇠= H2(K) ⇠= F and H1(K) ⇠= F2.

Figure 11.10: In this figure we pro-
vide a geometric justification for
the way the orientation carries for-
ward through oriented 2-paths. The
bottom-right part is a snapshot from
the center-right part Figure 11.9
indicating how the orientation of the
diagonal edge carries on through the
arrow to the other two edges of the
triangle. The first three parts of this
figure indicate how such an orienta-
tion on the two edges is obtained by
deforming the oriented diagonal edge
along the arrow of a discrete vector
field.

Generating DMFs and gradient vector fields

Using discrete Morse theory depends on the ability to generate

DMFs and gradient vector fields with as few critical simplices as pos-

sible. The weak Morse inequalities show that the lower bounds for the

numbers of critical simplices are Betti numbers. A DMF on a simpli-

cial complex is perfect if the number of critical p-simplices coincides

with the pth Betti number. In terms of the numbers of critical sim-

plices, perfect DMFs are optimal DMFs. Not every simplicial complex

admits a perfect DMF: an example is the Dunce hat.

There is a simple algorithm to generate a perfect DMF on a graph.

For each component generate a gradient vector field as follows:

• Find a spanning tree.

• Choose a critical vertex.

• Define a gradient vector field pointing towards the critical vertex

along the spanning tree, see Figure 11.11.
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The mentioned construction can be generalized to higher dimen-

sional simplicial complexes: keep adding arrows while making sure

that the acyclicity condition is preserved. However, better results are

typically obtained through more elaborate designs.

Figure 11.11: A graph (left) and a
blue spanning tree (right) with a
gradient vector field pointing to the
chosen critical vertex (red). The
edges not contained in the tree (red)
are the critical edges.

11.4 Concluding remarks

Recap (highlights) of this chapter

• Discrete Morse functions

• Gradient vector fields

• Morse homology

Background and applications

Smooth Morse theory was developed20 by Marston Morse in the 20 Marston Morse. The Calculus of
Variations in the Large. American
Mathematical Society Colloquium
Publication. Vol. 18. New York, 1934

first part of the twentieth century. Amongst its results it relates crit-

ical points and gradient flows of a generic function on a manifold to

the homology of a manifold. Its discrete version21 has been introduced 21 Robin Forman. A user’s guide to
discrete morse theory. Sém. Lothar.
Combin., 48, 12 2001

at the turn of the millennium. The past two decades saw a consid-

erable development of discrete Morse theory from various directions,

including computational aspects, developing analogies between discrete

and smooth results, etc. For a textbook presenting smooth and dis-

crete point of view see a book22, for recent applications see a book23. 22 Kevin P. Knudson. Morse The-
ory: Smooth and Discrete. World
scientific, 2015. doi: 10.1142/9360
23 Tamal K. Dey and Yusu Wang.
Computational Topology for Data
Analysis. Cambridge: Cambridge
University Press, 2022. doi:
10.1017/9781009099950

An algorithm for generating a discrete morse function is given in a

paper24.

24 Henry King, Kevin Knudson, and
Neža Mramor. Generating Discrete
Morse Functions from Point Data.
Experiment. Math. 14 (4) 435 – 444,
2005

An echo of the smooth Morse theory is the hairy ball theorem: the

topology of a domain is connected to zeros of vector fields and thus to

extrema of functions. In a similar way, an echo of the discrete Morse

theory is our proof of the Euler-Poincaré formula, where we essentially

only counted the maxima of the x-coordinate function. Theorem 11.2.6

is a discrete variant of the assigning of a potential function to a vector

field.

Generalized discrete Morse theories can be used to prove25 that 25 Ulrich Bauer and Herbert Edels-
brunner. The morse theory of Čech
and Delaunay complexes. Transac-
tions of the American Mathemat-
ical Society, 369:1, 06 2016. doi:
10.1090/tran/6991

Čech complexes collapse onto alpha complexes in Euclidean spaces.

Several computer programs use discrete Morse theory to a di↵erent

degree to assist26 with computations of homology. The theory can also

26 For example, using simplification
using emergent pairs in Ripser. On
the other hand Perseus is actually
based on a discrete Morse theory.

be used as a preprocessing tool or a framework within which to analize

discrete functions.

A proof of Theorem 11.2.6

We first introduce some preliminary notions. Given a simplicial

complex K the Hasse diagram of K is a directed graph defined as

http://dx.doi.org/10.1142/9360
http://dx.doi.org/10.1017/9781009099950
http://dx.doi.org/10.1017/9781009099950
http://dx.doi.org/10.1090/tran/6991
http://dx.doi.org/10.1090/tran/6991
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follows:

1. The nodes are the simplices of K;

2. Directed edges correspond to pairs (simplex, a facet). In particular,

each n-simplex is the source of n + 1 directed edges.

An example is provided in Figure 11.12. The directed edges in the

graph represent the containment of a facet.

c

d

b

ae

hb, d, ei

hb, di hb, ei hd, ei ha, biha, eihc, di

hbi hdi hei hci hai

Figure 11.12: A simplicial complex
and its Hasse diagram. Hasse dia-
grams are typically drawn in levels
corresponding to the dimensions of
simplices.

Given an empty discrete vector field on a simplicial complex K,

the directed edges also represent the direction of descent of the corre-

sponding DMF. In this trivial case, all the simplices are critical, there

are no exceptions and the DMF respects dimension. An obvious choice

of a DMF in this case is the dimension function of a simplex. For il-

lustrative purposes let us discuss how we could obtain such a function

from the Hasse diagram in an inductive manner:

• Assign the smallest value, say 0, to all minimal nodes of a directed

graph;

• Assign the second smallest value, say 1, to all nodes whose lower

set27 has already been enumerated; 27 The lower set of a node s is the
collection of all nodes which appear
as the target of a directed edge
starting at s.

• Proceed by induction: In step number n assign the nth smallest

value, say n � 1, to all nodes whose lower set has already been

enumerated;

This inductive construction of function works for any acyclic di-

rected graph and will be used in our eventual proof.

c

d

b

ae

hb, d, ei

hb, di hb, ei hd, ei ha, biha, eihc, di

hbi hdi hei hci hai

Figure 11.13: The modified Hasse
diagram, the reverted edges are red.

Given a non-trivial discrete vector field on a simplicial complex K
we define a modified Hasse diagram of K by reverting the direction

of the directed edges corresponding to the regular pairs, see Figure

11.12 for an example. A modified Hasse diagram encodes the su�cient

conditions on a DMF to generate the initial discrete vector field. The

above inductive procedure on such a diagram will produce a required

DMF i↵ the diagram itself is acyclic as a directed graph.

Lemma 11.4.1. The modified Hasse diagram of an acyclic discrete

vector field is acyclic.

Proof. Since each simplex can be a member of at most one regular

pair in a discrete vector field, a cycle in the modified Hasse diagram

H cannot contain consecutive directed edges corresponding to regular

pairs. As directed edges of H either end in a simplex of dimension

1 higher (in the case of regular pairs) or lower (in the case of edges

encoding the facet relation) than the dimension of the initial simplex,

any cycle in H has to be an alternating concatenation of these two

types. As a result, a cycle in H corresponds to a p-cycle in the initial
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discrete vector field, which is non-existent by the main assumption.
c

d

b

ae

hb, d, ei

hb, di hb, ei hd, ei ha, biha, eihc, di

hbi hdi hei hci hai
0

11

2 2

33

4

4

5 5

6

654

0

2

2 1

1

5 4

3

3

Figure 11.14: The modified Hasse
diagram and the DMF (in red) con-
structed by the inductive proceedure.

A proof of Theorem 11.2.6. Given an acyclic discrete vector field, the

corresponding modified Hasse diagram is acyclic by Lemma 11.4.1.

Thus the inductive procedure above results in a suitable DMF, see

Figure 11.14.
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a�ne combination, 33

a�ne hull, 33

a�ne independence, 34

Alexander duality, 102

alpha complex, 65

annotation, 138

ball, 12

barcode, 121, 125

barycentric coordinates, 21, 34

barycentric subdivision, 20

basis, 79

Betti number, 89

birth simplex, 129

body, 36

bottleneck distance, 146

boundary, 89

boundary map, 87

boundary of a manifold, 48

boundary point, 48

Brouwer fixed point, 111

Brouwer fixed point theorem,

111

chain, 86

chain complex, 88

chain group, 86

classification algorithm for

surfaces, 55

close manifold, 48

closed surface, 48

coface, 35

collapse, 157

column echelon form, 93

combinatorial manifold, 49

component, 17

connected space, 17

connected sum, 52

consistent orientation, 51

continuous filtration, 138

continuous map, 13

contractible space, 16

convex combination, 21

convex hull, 21

convex set, 21

critical scale, 139, 141

critical simplex, 160

cubical complex, 106

cycle, 89

Čech complex, 61

Čech filtration, 62

Dante, 57

Delaunay triangulation, 25

diameter, 59

dimension of a simplex, 35

dimension of a simplicial

complex, 36

direct sum, 142

disc, 14

discrete Morse function, 159

discrete vector field, 160

distance, 11
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Dowker duality, 73

elder rule, 122

elementary collapse, 44, 96, 157

elementary divisors, 104

Euler characteristic, 22, 41, 97

Euler-Poincaré formula, 22

exact sequence, 114

face, 35

facet, 35

field, 75

fields of remainders, 76

filtration, 123

filtration function, 138

free face, 157

full simplex, 98

functoriality, 111

fundamental class, 99

geodesic metric, 12

geometric realization, 38

geometric simplex, 35

geometric simplicial complex,

35

gradient vector field, 160

Gromov-Hausdor↵ distance,

144

group, 81

hairy ball theorem, 112

Hausdor↵ distance, 143

homeomorphism, 14

homology group, 89

homology representative, 94

homomorphism, 82

homotopic maps, 15

homotopy, 15

homotopy equivalence, 16

homotopy equivalent spaces, 16

image, 79

incremental expansion, 96

induced maps, 110

induced orientation, 51

Inscribed angle theorem, 28

interior of a manifold, 48

interior point, 48

interleaving, 68

interleaving distance, 140, 143

interval module, 142

isometry, 13

isomorphism, 79, 82, 142

Jaccard distance, 12

Jung’s theorem, 62

kernel, 79

Klein bottle, 48, 100

line sweep, 23

link, 37

locally Delaunay, 26

manifold, 48

mapper, 66

matching distance, 146

MaxMin edge, 27

Mayer-Vietoris exact sequence,

115

metric, 11

metric space, 11

MiniBall algorithm, 70

Moebius band, 16

Morse homology, 163

multiplicity, 126

nerve, 62

nerve theorem, 64

o↵sets, 139

orientable surface, 51

oriented simplex, 50

oriented triangulation, 51

p-path, 160

partial matching, 146

path, 13
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path component, 17

path connected space, 17

perfect DMF, 165

persistence diagram, 126

persistence module, 141

persistent Betti numbers, 123

persistent homology, 123

pivot, 128

projective plane, 48

quotient, 76

rank, 83

regular pairs, 160

relative homology, 119

representing cycles, 94

retraction, 111

Rips complex, 59

Rips filtration, 60

row echelon form, 92

simplicial approximation, 43

simplicial map, 42

skeleton, 36

Smith normal form, 94, 104

sphere, 14

star, 37

subcomplex, 36

subdivision, 36

sublevel filtration, 138

surface, 48

tangent vector field, 112

terminal simplex, 129

torus, 39

triangulation, 19, 36

vector space, 78

Vietoris complex, 73

Voronoi diagram, 25

Voronoi region, 24

Wasserstein distances, 147

zig-zag lemma, 117
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